欢迎来到天天文库
浏览记录
ID:49601105
大小:783.50 KB
页数:8页
时间:2020-03-02
《考前30天之备战高考数学冲刺押题系列-名师预测 卷 5.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、卷5一、填空题:本大题共14小题,每小题5分,共70分.1.复数在复平面上对应的点在第象限.2.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是.3.已知集合,集合,若命题“”是命题“”的充分不必要条件,则实数的取值范围是.4.如图,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=,AA1=3,M为线段BB1上的一动点,则当AM+MC1最小时,△AMC1的面积为.(第4题).5.
2、集合若则.6.阅读如图所示的程序框,若输入的是100,则输出的变量的值是.7.向量,=.8.方程有个不同的实数根.9.设等差数列的前项和为,若≤≤,≤≤,则的取值范围是.10.过双曲线的左焦点,作圆:的切线,切点为,直线交双曲线右支于点,若,则双曲线的离心率为.11.若函数在定义域内是增函数,则实数的取值范围是.12.如果圆上总存在两个点到原点的距离为1,则实数的取值范围是.13.已知实数满足,则的最大值为.14.当为正整数时,函数表示的最大奇因数,如,设,则.答案1.四2.63.4.5.{2,3,4}6.50497.8.29.10.11.12.13
3、.414.二、解答题:本大题共六小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)在锐角中,角,,所对的边分别为,,.已知.(1)求;(2)当,且时,求.解:(1)由已知可得.所以.………………2分因为在中,,所以.………………………………4分(2)因为,所以.………………………………6分因为是锐角三角形,所以,.………………8分所以.11分由正弦定理可得:,所以.…………………………………………14分说明:用余弦定理也同样给分.16.(本题满分14分)如图,是边长为的正方形,平面,,.(1
4、)求证:平面;(2)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.解:(1)证明:因为平面,所以.……………………2分因为是正方形,所以,因为………………4分从而平面.……………………6分(2)当M是BD的一个三等分点,即3BM=BD时,AM∥平面BEF.…………7分取BE上的三等分点N,使3BN=BE,连结MN,NF,则DE∥MN,且DE=3MN,因为AF∥DE,且DE=3AF,所以AF∥MN,且AF=MN,故四边形AMNF是平行四边形.……………………………………10分所以AM∥FN,因为AM平面BEF,FN平面BEF,…………
5、………………………………12分所以AM∥平面BEF.…………………………………………14分17.(本题满分14分)已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l:.⑴求椭圆的标准方程;⑵设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.解:⑴∵椭圆C的短轴长为2,椭圆C的一条准线为l:,∴不妨设椭圆C的方程为.(2分)∴,(4分)即.(5分)∴椭圆C的方程为.(6分)⑵F(1,0),右准线为l:,设,则直线FN的斜率为,直线ON的斜率为,(8分)∵FN⊥OM,∴直线
6、OM的斜率为,(9分)∴直线OM的方程为:,点M的坐标为.(11分)∴直线MN的斜率为.(12分)∵MN⊥ON,∴,∴,∴,即.(13分)∴为定值.(14分)说明:若学生用平面几何知识(圆幂定理或相似形均可)也得分,设垂足为P,准线l与x轴交于Q,则有,又,所以为定值.18.(本题满分16分)如图,直角三角形ABC中,∠B=,AB=1,BC=.点M,N分别在边AB和AC上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△MN,使顶点落在边BC上(点和B点不重合).设∠AMN=.(1)用表示线段的长度,并写出的取值范围;(2)求线段长度的最小值
7、.解:(1)设,则.(2分)在Rt△MB中,,(4分)∴.(5分)∵点M在线段AB上,M点和B点不重合,点和B点不重合,∴.(7分)(2)在△AMN中,∠ANM=,(8分),(9分)=.(10分)令==.(13分)∵,∴.(14分)当且仅当,时,有最大值,(15分)∴时,有最小值.(16分)19.(本题满分16分)已知,函数.(1)如果实数满足,函数是否具有奇偶性?如果有,求出相应的值;如果没有,说明为什么?(2)如果判断函数的单调性;(3)如果,,且,求函数的对称轴或对称中心.解:(1)如果为偶函数,则恒成立,(1分)即:(2分)由不恒成立,得(3
8、分)如果为奇函数,则恒成立,(4分)即:(5分)由恒成立,得(6分)(2),∴当时,显然在R上为增函数;(8
此文档下载收益归作者所有