信号与系统第二章.ppt

信号与系统第二章.ppt

ID:49485624

大小:796.00 KB

页数:29页

时间:2020-02-06

信号与系统第二章.ppt_第1页
信号与系统第二章.ppt_第2页
信号与系统第二章.ppt_第3页
信号与系统第二章.ppt_第4页
信号与系统第二章.ppt_第5页
资源描述:

《信号与系统第二章.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第二章连续系统的时域分析LTI连续系统的时域分析,即对于给定的激励,根据描述系统响应与激励之间的微分方程求的其响应的方法。归结为:建立并求解线性微分方程。由于在其分析过程涉及的函数变量均为时间t,故称为时域分析法。这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。2.1LTI连续系统的响应一、微分方程的经典解y(n)(t)+an-1y(n-1)(t)+…+a1y(1)(t)+a0y(t)=bmf(m)(t)+bm-1f(m-1)(t)+…+b1f(1)(t)+b0f(t)微分方程的经典解:y

2、(t)(完全解)=yh(t)(齐次解)+yp(t)(特解)齐次解是齐次微分方程y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0的解。yh(t)的函数形式由上述微分方程的特征根确定。例描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求(1)当f(t)=2e-t,t≥0;y(0)=2,y’(0)=-1时的全解;特解的函数形式与激励函数的形式有关。P41表2-1、2-2齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)的函数形式无关,称为系统的固有响应或自由响

3、应;特解的函数形式由激励确定,称为强迫响应。解:(1)特征方程为λ2+5λ+6=0其特征根λ1=–2,λ2=–3。齐次解为yh(t)=C1e–2t+C2e–3t由表2-2可知,当f(t)=2e–t时,其特解可设为yp(t)=Pe–t将其代入微分方程得Pe–t+5(–Pe–t)+6Pe–t=2e–t解得P=1于是特解为yp(t)=e–t全解为:y(t)=yh(t)+yp(t)=C1e–2t+C2e–3t+e–t其中待定常数C1,C2由初始条件确定。y(0)=C1+C2+1=2,y’(0)=–2C1–3C2

4、–1=–1解得C1=3,C2=–2最后得全解y(t)=3e–2t–2e–3t+e–t,t≥0二、关于0-和0+初始值若输入f(t)是在t=0时接入系统,则确定待定系数Ci时用t=0+时刻的初始值,即y(j)(0+)(j=0,1,2…,n-1)。而y(j)(0+)包含了输入信号的作用,不便于描述系统的历史信息。在t=0-时,激励尚未接入,该时刻的值y(j)(0-)反映了系统的历史情况而与激励无关。称这些值为初始状态或起始值。通常,对于具体的系统,初始状态一般容易求得。这样为求解微分方程,就需要从已知的初始

5、状态y(j)(0-)设法求得y(j)(0+)。下列举例说明。例:描述某系统的微分方程为y”(t)+3y’(t)+2y(t)=2f’(t)+6f(t)已知y(0-)=2,y’(0-)=0,f(t)=ε(t),求y(0+)和y’(0+)。解:将输入f(t)=ε(t)代入上述微分方程得y”(t)+3y’(t)+2y(t)=2δ(t)+6ε(t)(1)冲激平衡法是指为保持系统对应的动态方程式的恒等,方程式两边所具有的冲激信号函数及其各阶导数必须相等。那么,上式对于t=0-也成立,在0-

6、t)项的系数应相等。由于等号右端为2δ(t),故y”(t)应包含冲激函数,从而y’(t)在t=0处将发生跃变,即y’(0+)≠y’(0-)。但y’(t)不含冲激函数,否则y”(t)将含有δ’(t)项。由于y’(t)中不含δ(t),但含有ε(t),故y(t)在t=0处是连续的。故y(0+)=y(0-)=2对式(1)两端积分有由于积分在无穷小区间[0-,0+]进行的,且y(t)在t=0连续,故于是由上式得[y’(0+)–y’(0-)]+3[y(0+)–y(0-)]=2考虑y(0+)=y(0-)=2,所以y’

7、(0+)–y’(0-)=2,y’(0+)=y’(0-)+2=2由上可见,当微分方程等号右端含有冲激函数(及其各阶导数)时,响应y(t)及其各阶导数中,有些在t=0处将发生跃变。但如果右端不含时,则不会跃变。三、零输入响应和零状态响应y(t)=yzi(t)+yzs(t),也可以分别用经典法求解。注意:对t=0时接入激励f(t)的系统,初始值yzi(j)(0+),yzi(j)(0+)(j=0,1,2,…,n-1)的计算。y(j)(0-)=yzi(j)(0-)+yzs(j)(0-)y(j)(0+)=yzi(j

8、)(0+)+yzs(j)(0+)对于零输入响应,由于激励为零,故有yzi(j)(0+)=yzi(j)(0-)=y(j)(0-)对于零状态响应,在t=0-时刻激励尚未接入,故应有yzs(j)(0-)=0yzs(j)(0+)的求法下面举例说明。例:描述某系统的微分方程为P50y”(t)+3y’(t)+2y(t)=2f’(t)+6f(t)已知y(0-)=2,y’(0-)=0,f(t)=ε(t)。求该系统的零输入响应和零状态响应。解:(1)零输入响

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。