欢迎来到天天文库
浏览记录
ID:48944392
大小:59.28 KB
页数:6页
时间:2020-02-25
《2019_2020学年高中数学课时跟踪检测(十一)函数的极值北师大版选修2_2.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时跟踪检测(十一)函数的极值一、基本能力达标1.已知函数y=x-ln(1+x2),则函数y=x-ln(1+x2)的极值情况是( )A.有极小值 B.有极大值C.既有极大值又有极小值D.无极值解析:选D ∵y′=1-·(1+x2)′=1-=≥0,∴函数y=x-ln(1+x2)无极值.2.函数f(x)=x2-lnx的极值点为( )A.0,1,-1B.C.-D.,-解析:选B 由已知,得f(x)的定义域为(0,+∞),f′(x)=3x-=,令f′(x)=0,得x=.当x>时,f′(x)
2、>0;当00D.b<解析:选A f′(x)=3x2-3b.因f(x)在(0,1)内有极值,所以f′(x)=0有解,∴x=±,∴0<<1,∴03、为f(-)B.f(x)的极大值为f(-),极小值为f()C.f(x)的极大值为f(-3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(-3)解析:选D 由题图可知,当x∈(-∞,-3)时,xf′(x)>0,即f′(x)<0;当x∈(-3,0)时,xf′(x)<0,即f′(x)>0;当x∈(0,3)时,xf′(x)>0,即f′(x)>0;当x∈(3,+∞)时,xf′(x)<0,即f′(x)<0.故函数f(x)在x=-3处取得极小值,在x=3处取得极大值.5.若函数f(x)=在x=14、处取得极值,则a=________.解析:f′(x)==,由题意得f′(1)==0,解得a=3.经检验,a=3符合题意.答案:36.已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图像经过点(1,0),(2,0),如图所示,则下列说法中正确的是________.①当x=时函数取得极小值;②f(x)有两个极值点;③当x=2时函数取得极小值;④当x=1时函数取得极大值.解析:由图像可知,当x∈(-∞,1)时,f′(x)>0;当x∈(1,2)时,f′(x)<0;当x∈(2,+∞)时,f5、′(x)>0.∴f(x)有两个极值点1和2,且当x=2时函数取得极小值,当x=1时,函数取得极大值,故只有①不正确.答案:②③④7.求下列函数的极值.(1)f(x)=x3-x2-3x+4;(2)f(x)=x3ex.解:(1)∵f(x)=x3-x2-3x+4,∴f′(x)=x2-2x-3.令f′(x)=0,得x1=3,x2=-1.当x变化时,f′(x),f(x)的变化,如表所示:x(-∞,-1)-1(-1,3)3(3,+∞)f′(x)+0-0+f(x)极大值极小值∴x=-1是f(x)的极大值6、点,x=3是f(x)的极小值点.∴f(x)极大值=f(-1)=,f(x)极小值=f(3)=-5.(2)f′(x)=3x2·ex+x3·ex=ex·x2(x+3),由f′(x)=0得x=0或x=-3.当x变化时,f′(x)与f(x)的变化如表所示:x(-∞,-3)-3(-3,0)0(0,+∞)f′(x)-0+0+f(x)极小值无极值由表可知x=-3是f(x)的极小值点.f(x)极小值=f(-3)=-27e-3,函数无极大值.8.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)7、在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解:(1)f′(x)=ex(ax+a+b)-2x-4.由已知得f(0)=4,f′(0)=4,故b=4,a+b=8,从而a=4,b=4.(2)由(1)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2).令f′(x)=0,得x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f′(x)>0;当x∈(-2,-ln2)时,8、f′(x)<0.故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).二、综合能力提升1.设函数f(x)=exsinx,x∈[0,π],则( )A.x=为f(x)的极小值点B.x=为f(x)的极大值点C.x=为f(x)的极小值点D.x=为f(x)的极大值点解析:选D ∵f(x)=exsinx,∴f′(x)=ex(sinx+cosx)=exsin,由f′(x)≤0,得sin≤0,∴2k
3、为f(-)B.f(x)的极大值为f(-),极小值为f()C.f(x)的极大值为f(-3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(-3)解析:选D 由题图可知,当x∈(-∞,-3)时,xf′(x)>0,即f′(x)<0;当x∈(-3,0)时,xf′(x)<0,即f′(x)>0;当x∈(0,3)时,xf′(x)>0,即f′(x)>0;当x∈(3,+∞)时,xf′(x)<0,即f′(x)<0.故函数f(x)在x=-3处取得极小值,在x=3处取得极大值.5.若函数f(x)=在x=1
4、处取得极值,则a=________.解析:f′(x)==,由题意得f′(1)==0,解得a=3.经检验,a=3符合题意.答案:36.已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图像经过点(1,0),(2,0),如图所示,则下列说法中正确的是________.①当x=时函数取得极小值;②f(x)有两个极值点;③当x=2时函数取得极小值;④当x=1时函数取得极大值.解析:由图像可知,当x∈(-∞,1)时,f′(x)>0;当x∈(1,2)时,f′(x)<0;当x∈(2,+∞)时,f
5、′(x)>0.∴f(x)有两个极值点1和2,且当x=2时函数取得极小值,当x=1时,函数取得极大值,故只有①不正确.答案:②③④7.求下列函数的极值.(1)f(x)=x3-x2-3x+4;(2)f(x)=x3ex.解:(1)∵f(x)=x3-x2-3x+4,∴f′(x)=x2-2x-3.令f′(x)=0,得x1=3,x2=-1.当x变化时,f′(x),f(x)的变化,如表所示:x(-∞,-1)-1(-1,3)3(3,+∞)f′(x)+0-0+f(x)极大值极小值∴x=-1是f(x)的极大值
6、点,x=3是f(x)的极小值点.∴f(x)极大值=f(-1)=,f(x)极小值=f(3)=-5.(2)f′(x)=3x2·ex+x3·ex=ex·x2(x+3),由f′(x)=0得x=0或x=-3.当x变化时,f′(x)与f(x)的变化如表所示:x(-∞,-3)-3(-3,0)0(0,+∞)f′(x)-0+0+f(x)极小值无极值由表可知x=-3是f(x)的极小值点.f(x)极小值=f(-3)=-27e-3,函数无极大值.8.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)
7、在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解:(1)f′(x)=ex(ax+a+b)-2x-4.由已知得f(0)=4,f′(0)=4,故b=4,a+b=8,从而a=4,b=4.(2)由(1)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2).令f′(x)=0,得x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f′(x)>0;当x∈(-2,-ln2)时,
8、f′(x)<0.故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).二、综合能力提升1.设函数f(x)=exsinx,x∈[0,π],则( )A.x=为f(x)的极小值点B.x=为f(x)的极大值点C.x=为f(x)的极小值点D.x=为f(x)的极大值点解析:选D ∵f(x)=exsinx,∴f′(x)=ex(sinx+cosx)=exsin,由f′(x)≤0,得sin≤0,∴2k
此文档下载收益归作者所有