2012届总复习-走向清华北大--25平面向量的数量积.ppt

2012届总复习-走向清华北大--25平面向量的数量积.ppt

ID:48787511

大小:480.50 KB

页数:51页

时间:2020-01-24

2012届总复习-走向清华北大--25平面向量的数量积.ppt_第1页
2012届总复习-走向清华北大--25平面向量的数量积.ppt_第2页
2012届总复习-走向清华北大--25平面向量的数量积.ppt_第3页
2012届总复习-走向清华北大--25平面向量的数量积.ppt_第4页
2012届总复习-走向清华北大--25平面向量的数量积.ppt_第5页
资源描述:

《2012届总复习-走向清华北大--25平面向量的数量积.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第二十五讲平面向量的数量积回归课本1.向量的夹角(1)已知两个非零向量a和b,作则∠AOB=θ叫做向量a与b的夹角.(2)向量夹角θ的范围是[0,π],a与b同向时,夹角θ=0;a与b反向时,夹角θ=π.(3)如果向量a与b的夹角是90°,我们说a与b垂直,记作a⊥b.2.向量的投影

2、a

3、cosθ(

4、b

5、cosθ)叫做向量a在b方向上(b在a方向上)的投影.3.平面向量数量积的定义a·b=

6、a

7、

8、b

9、cosθ(θ是向量a与b的夹角),规定:零向量与任一向量的数量积为0.4.向量数量积的性质设a,b都是非零向量,e是与b方向相同的

10、单位向量,θ是a与e的夹角,则(1)e·a=a•e=

11、a

12、cosθ.(2)a⊥b⇔=a•b=0.(3)当a与b同向时,a·b=

13、a

14、

15、b

16、;当a与b反向时,a·b=-

17、a

18、

19、b

20、;特别地,a·a=

21、a

22、2或

23、a

24、=(4)cosθ=(5)

25、a·b

26、≤

27、a

28、

29、b

30、.5.向量数量积的运算律(1)a·b=b•a.(交换律)(2)(λa)·b=λ(a•b)=a•(λb).(数乘结合律)(3)(a+b)·c=a•c+b•c.(分配律)6.平面向量数量积的坐标表示(1)若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.(

31、2)若a=(x1,y1),b=(x2,y2),θ是a与b的夹角,则cosθ=(3)若向量a的起点坐标和终点坐标分别为(x1,y1),(x2,y2),则

32、a

33、=这就是平面内两点间的距离公式.(4)设a=(x1,y1),b=(x2,y2),则a⊥ba•b=0x1x2+y1y2=0.考点陪练1.(2010·北京)a,b为非零向量,“a⊥b”是“函数f(x)=(xa+b)•(xb-a)为一次函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:函数f(x)=x2a•b-(a2-b2)x-a

34、•b,当函数f(x)是一次函数时必然要求a•b=0,即a⊥b,但当a⊥b,

35、a

36、=

37、b

38、时,函数f(x)不是一次函数,故选B.答案:B2.(2010·重庆)已知向量a,b满足a•b=0,

39、a

40、=1,

41、b

42、=2,则

43、2a-b

44、=()A.0B.C.4D.8解析:因为

45、2a-b

46、2=(2a-b)2=4a2+b2-4a•b=4a2+b2=4+4=8,故

47、2a-b

48、=,选B.答案:B答案:D答案:A答案:B类型一数量积的性质及运算解题准备:1.数量积的运算要注意a=0时,a·b=0,但a·b=0时不能得到a=0,或b=0,因为a⊥b时,也

49、有a·b=0.2.若a、b、c是实数,则ab=ac⇒b=c(a≠0);但对于向量,就没有这样的性质,即若向量a、b、c满足a·b=a·c(a≠0),则不一定有b=c,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.[答案]-25(2)设a、b、c是任意的非零向量,且互不共线.给出以下命题:①(a·b)c-(c·a)b=0;②

50、a

51、-

52、b

53、<

54、a-b

55、;③(b·c)a-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9

56、a

57、2-4

58、b

59、2.其中是真命题的是________.[解析]对于①只有当向量b,c的方向相同

60、时,二者才相等所以①错;考虑②式对应的几何意义,由三角形两边之差小于第三边知②正确;由[(b·c)a-(c·a)b]·c=0知(b·c)a-(c·a)b与c垂直,故③错;④向量的乘法运算符合多项式乘法法则,所以④正确.所以正确命题的序号是②④.[答案]②④类型二利用数量积解决长度、垂直问题解题准备:常用的公式与结论有:【典例2】已知

61、a

62、=4,

63、b

64、=8,a与b的夹角是120°.(1)计算①

65、a+b

66、,②

67、4a-2b

68、;(2)当k为何值时,(a+2b)⊥(ka-b)?[分析]利用

69、a

70、=及a⊥b⇔a·b=0即可解决问题.[解]由

71、已知,a·b=4×8×=-16.(1)①∵

72、a+b

73、2=a2+2a·b+b2=16+2×(-16)+64=48,∴

74、a+b

75、=.②∵

76、4a-2b

77、2=16a2-16a·b+4b2=16×16-16×(-16)+4×64=3×162.∴

78、4a-2b

79、=.(2)若(a+2b)⊥(ka-b),则(a+2b)(ka-b)=0,∴ka2+(2k-1)a·b-2b2=0.16k-16(2k-1)-2×64=0,∴k=-7.类型三利用数量积解决夹角问题解题准备:1.涉及到与夹角有关的问题,往往利用向量的夹角公式解决,这也是平面向量数量积的一个

80、重要考点.3.在应用上述公式求夹角时,要考虑夹角的取值范围.【典例3】已知a、b都是非零向量,且

81、a

82、=

83、b

84、=

85、a-b

86、.求a与a+b的夹角.[分析]由公式cos=可知,求两个向量的夹角关键是求数量积及模的积.本题中

87、a

88、=

89、b

90、=

91、a-b

92、的充分利

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。