欢迎来到天天文库
浏览记录
ID:48577176
大小:18.00 KB
页数:2页
时间:2020-02-26
《命题 定理 证明教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、命题定理知识的要点与目标:1、命题的概念2、区分命题的题设和结论并会改写3、判断命题的真假4、认识定理产生的过程和原则,初步掌握命题证明的一般要求。一、基础回眸:请任意写出3个与垂线或平行线相关的定理(结论)二、自己动手请认真学习课本p20-22的内容,回答一下问题:1、命题的定义()叫命题。概念理解考察:这些是不是命题?明天有雨吗?连接A、B两点这位同学好认真呀!你在基础回顾所举的例子是不命题?2、命题的组成命题由()和()组成,其中:()是已知事项,()是由已知事项推出的事项。每个命题都可以写成“如果……….那么
2、……….”形式,“如果”后面接的是(),“那么”后面接的是()。完成p21第一题。3、命题的真假()的命题叫做真命题,()命题叫做假命题。其中,经过()得到的真命题叫做()。请各举一个例子。4、命题的证明:一般的,判断一个真命题需要经过(),()的过程叫做证明。读例题2,尝试自己证明,体味证明要求。判断一个命题为假,只需要()三、师生共进:1、命题一定是一个()句,是对某件事物的()。2、命题都有题设和结论组成,有的不明显,需要分析。将下列命题改成“如果……那么…….”的形式。(1)、互补的两个角不可能都是锐角:(2
3、)、两直线平行,内错角相等:(3)、对顶角相等:(4)、同角的补角相等总结技巧:将命题改写需要注意什么?3、命题的真假:题设成立条件下,一定成立的是(),不是一定成立的是()。思考“不是一定成立”是何意?(1)、相等的两个角是对顶角:(2)、同位角相等(3)、同一平面内,垂直于同一直线的俩直线是平行的。4、命题真假的判定依据(方法):真命题:()注意事项:假命题:()为什么只需要举一个反例?一、谁主沉浮:1、下面语句是命题么?()明天我们去公园()对顶角不相等()你看,这个烛台多漂亮啊()今天你努力了么?2、指出下面
4、命题的题设和结论:()同旁内角互补,两直线平行()直角都相等()垂直于同一直线的两条直线相互平行3、把下列命题改成如果那么的形式()同角的补角相等()末尾数是5的数,能被5整除。()互补的两个角不可能都是锐角4、判断下列命题的真假,是假命题的举出反例。()同位角相等()锐角小于其补角()若a小于b,c小于b,则a=b二、知识开会:三、晚饭开胃菜:
此文档下载收益归作者所有