命题、定理、证明设计.doc

命题、定理、证明设计.doc

ID:48577218

大小:60.00 KB

页数:2页

时间:2020-02-26

命题、定理、证明设计.doc_第1页
命题、定理、证明设计.doc_第2页
资源描述:

《命题、定理、证明设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、5.3.2命题、定理【学习目标】了解命题、定理的概念,能够区分命题的题设和结论.【学习重点】能够区分命题的题设和结论. 【学习难点】能够区分命题的题设和结论.【学习过程】一、学前准备歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“独路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:“我从来不给傻子让路!”而对如此的尴尬的局面,歌德笑容可掏,谦恭的闪在一旁,有礼貌地回答道“呵呵,我可恰相反”,结果故作聪明的批评家,反倒自讨没趣.你知道为什么吗?二、探索思考探索:在日

2、常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是,用“那么”开始的部份是.像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做

3、假命题,即错误的命题叫做______.我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理.练习:1.下列语句是命题的个数为()①画∠AOB的平分线;②直角都相等;③同旁内角互补吗?④若│a│=3,则a=3.A.1个B.2个C.3个D.4个2.下列5个命题,其中真命题的个数为()①两个锐角之和一定是钝角;②直角小于夹角;③同位角相等,两直线平行;④内错角互补,两直线平行;⑤如果a

4、B.两直线平行,同旁内角相等C.“同旁内角互补”不是命题D.“相等的两个角是对顶角”是假命题4.“同一平面内,垂直于同一条直线的两条直线互相平行”是命题,其中,题设是,结论是,5.将下列命题改写成“如果……那么……”的形式.(1)直角都相等.(2)末位数是5的整数能被5整除.(3)三角形的内角和是180°.(4)平行于同一条直线的两条直线互相平行.三、当堂反馈1.下列语句中不是命题的有()⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放.A.1个B.2个C.3个D.4个2.下列命题中,正确的是

5、()A.在同一平面内,垂直于同一条直线的两条直线平行;B.相等的角是对顶角;C.两条直线被第三条直线所截,同位角相等;D.和为180°的两个角叫做邻补角. 3.下列命题中的条件(题设)是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果两条直线都与第三条直线平行,那么这两条直线也平行;4.将下列命题改写成“如果……那么……”的形式,并判断正误.(1)对顶角相等;(2)同位角相等;(3)同角的补角相等.四、学习反思本节课你有哪些收获?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。