人教A版高中数学选修1-1课时提升作业 十一 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用 精讲优练课型 Word版含答案.doc

人教A版高中数学选修1-1课时提升作业 十一 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用 精讲优练课型 Word版含答案.doc

ID:48531454

大小:3.16 MB

页数:10页

时间:2020-02-25

人教A版高中数学选修1-1课时提升作业 十一 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用 精讲优练课型 Word版含答案.doc_第1页
人教A版高中数学选修1-1课时提升作业 十一 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用 精讲优练课型 Word版含答案.doc_第2页
人教A版高中数学选修1-1课时提升作业 十一 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用 精讲优练课型 Word版含答案.doc_第3页
人教A版高中数学选修1-1课时提升作业 十一 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用 精讲优练课型 Word版含答案.doc_第4页
人教A版高中数学选修1-1课时提升作业 十一 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用 精讲优练课型 Word版含答案.doc_第5页
资源描述:

《人教A版高中数学选修1-1课时提升作业 十一 2.1.2 椭圆的简单几何性质 第2课时 椭圆方程及性质的应用 精讲优练课型 Word版含答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、经典小初高讲义温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业十一椭圆方程及性质的应用一、选择题(每小题5分,共25分)1.(2016·聊城高二检测)过椭圆x2+2y2=4的左焦点F作倾斜角为的弦AB,则弦AB的长为 (  )A.B.C.D.【解析】选B.椭圆的方程可化为+=1,所以F(-,0).又因为直线AB的斜率为,所以直线AB的方程为y=x+.由得7x2+12x+8=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x

2、1·x2=,所以

3、AB

4、==.2.AB为过椭圆+=1(a>b>0)中心的弦,F(c,0)为椭圆的右焦点,则△AFB面积的最大值为 (  )A.b2B.abC.acD.bc【解析】选D.由AB过椭圆中心,则yA+yB=0,故S△AFB=(yA-yB)·c=

5、2yA

6、·c=

7、yA

8、·c≤bc,即当AB为y轴时面积最大.小初高优秀教案经典小初高讲义3.(2016·济宁高二检测)如果椭圆+=1的弦被点(4,2)平分,则这条弦所在的直线方程是 (  )A.x-2y=0B.x+2y-4=0C.2x+3y-12=0D.x+2y-8=

9、0【解析】选D.设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,则两式相减再变形得+k=0.又弦中点为(4,2),故k=-,故这条弦所在的直线方程为y-2=-(x-4),整理得x+2y-8=0.4.(2016·衡水高二检测)如果AB是椭圆+=1(a>b>0)的任意一条与x轴不垂直的弦,O为椭圆的中心,e为椭圆的离心率,M为AB的中点,则kAB·kOM的值为 (  )A.e-1B.1-eC.e2-1D.1-e2【解析】选C.设A(x1,y1),B(x2,y2),中点M(x0,y0),由点差法,+=1,+=

10、1,作差得=,所以kAB·kOM=·=-==e2-1.【补偿训练】椭圆+=1中,以点M(-1,2)为中点的弦所在的直线斜率为 (  )A.   B.   C.   D.-【解析】选B.设弦的两个端点为A(x1,y1),B(x2,y2),则①-②得小初高优秀教案经典小初高讲义+=0,又因为弦中点为M(-1,2),所以x1+x2=-2,y1+y2=4,所以+=0,所以k==.5.(2016·郑州高二检测)在区间和上分别取一个数,记为a,b,则方程+=1表示焦点在x轴上且离心率小于的椭圆的概率为 (  )A.B.C.D.【解

11、析】选B.因为+=1表示焦点在x轴上且离心率小于的椭圆,所以a>b>0,a<2b,它对应的平面区域如图中阴影部分所示:则方程+=1表示焦点在x轴上且离心率小于的椭圆的概率为P===.二、填空题(每小题5分,共15分)6.(2016·南昌高二检测)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为    .【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(a>b>0).因为e=,所以=小初高优秀教案经典小初高讲义.

12、根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.答案:+=17.(2016·沈阳高二检测)椭圆+=1上有n个不同的点P1,P2,P3,…,Pn,椭圆的右焦点为F,数列{

13、PnF

14、}是公差大于的等差数列,则n的最大值为    .【解题指南】

15、P1F

16、=

17、a-c

18、=1,

19、PnF

20、=a+c=3,

21、PnF

22、=

23、P1F

24、+(n-1)d,再由数列{

25、PnF

26、}是公差大于的等差数列,可求出n的最大值.【解析】

27、P1F

28、=

29、a-c

30、=1,

31、PnF

32、=a+c=3,

33、PnF

34、=

35、P1F

36、+(n-1)d.若

37、d=,n=201,d>,n<201.答案:2008.(2016·长春高二检测)已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若

38、AB

39、=10,

40、BF

41、=8,cos∠ABF=,则C的离心率为    .【解题指南】由余弦定理解三角形,结合椭圆的几何性质(对称性)求出点A(或B)到右焦点的距离,进而求得a,c.【解析】在△ABF中,由余弦定理得

42、AF

43、2=

44、AB

45、2+

46、BF

47、2-2

48、AB

49、

50、BF

51、cos∠ABF,又

52、AB

53、=10,

54、BF

55、=8,cos∠ABF=,解得

56、AF

57、=

58、6.在△ABF中,

59、AB

60、2=102=82+62=

61、BF

62、2+

63、AF

64、2,故△ABF为直角三角形.设椭圆的右焦点为F′,连接AF′,BF′,根据椭圆的对称性,四边形AFBF′为矩形,则其对角线

65、FF′

66、=

67、AB

68、=10,且

69、BF

70、=

71、AF′

72、=8,即焦距2c=10,又据椭圆的定义,得

73、AF

74、+

75、AF′

76、=2a,所以2a=

77、AF

78、+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多