欢迎来到天天文库
浏览记录
ID:48470958
大小:907.77 KB
页数:16页
时间:2020-01-18
《数学人教版八年级上册12.2三角形全等的判定(5).2三角形全等的判定(5)ppt课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.2三角形全等的判定(5)开封市柳园口中学张山成学习目标:1.掌握全等三角形的判定方法.2.能结合已知条件合理选用某种判定方法证明两个三角形全等.学习重点:根据已知条件选择合适的判定方法证明两个三角形全等.知识点1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形2、全等三角形的性质:全等三角形的对应边相等,对应角相等。3、三角形全等的条件:SSSSASASAAASHL4、应用:利用全等三角形性质证明两条线段或两个角相等。例题一:已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEFDEFABC(1)若要以
2、“SAS”为依据,还缺条件_____;AB=DE(2)若要以“ASA”为依据,还缺条件____;∠ACB=∠DFE(3)若要以“AAS”为依据,还缺条件_____∠A=∠D(4)若要以“SSS”为依据,还缺条件___AB=DEAC=DF(5)若∠B=∠DEF=90°要以“HL”为依据,还缺条件_____AC=DF例2、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是拿()去配.证明题的分析思路:①要证什么②已有什么③还缺什么④创造条件注意1、证明两个三角形全等,要结合题目的条件和结论
3、,选择恰当的判定方法2、全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时①要观察待证的线段或角,在哪两个可能全等的三角形中。②有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角总之,证明过程中能用简单方法的就不要绕弯路。两直线平行,内错角相等FABDCE例3:点E、F在AC上,AD//BC,AD=CB,AE=CF.求证:△AFD≌△CEB分析:证三角形全等的三个条件∠A=∠C边角边AD//BCAD=CBAE=CFAF=CE?(已知)证明:∵AD//BC∴∠A=∠C又∵AE=CF在△A
4、FD和△CEB中,AD=CB∠A=∠CAF=CE∴△AFD≌△CEB(SAS)∴AE+EF=CF+EF即AF=CE摆齐根据写出结论指范围准备条件(已知)(已证)(已证)FABDCE(两直线平行,内错角相等)==__ABCDP例4已知:如图,P是BD上的任意一点AB=CB,AD=CD.求证:PA=PC①要证明PA=PC可将其放在ΔAPB和ΔCPB或ΔAPD和ΔCPD考虑②已有两条边对应相等(其中一条是公共边)③还缺一组夹角对应相等若能使∠ABP=∠CBP或∠ADP=∠CDP即可。创造条件分析:==__ABCDP例4已知:P是BD上的任意
5、一点AB=CB,AD=CD.求证PA=PC证明:在△ABD和△CBD中AB=CBAD=CDBD=BD∴△ABD≌△CBD(SSS)∴∠ABD=∠CBD在△ABP和△CBP中AB=BC∠ABP=∠CBPBP=BP∴△ABP≌△CBP(SAS)∴PA=PC巩固训练、已知:如图AB=AE,∠B=∠E,BC=EDAF⊥CD求证:点F是CD的中点分析:要证CF=DF可以考虑CF、DF所在的两个三角形全等,为此可添加辅助线构建三角形全等,如何添加辅助线呢?已有AB=AE,∠B=∠E,BC=ED怎样构建三角形能得到两个三角形全等呢?连结AC,AD添
6、加辅助线是几何证明中很重要的一种思路证明:连结AC和AD∵在△ABC和△AED中,AB=AE,∠B=∠E,BC=ED∴△ABC≌△AED(SAS)∴AC=AD(全等三角形的对应边相等)∵AF⊥CD∴∠AFC=∠AFD=90°,在Rt△AFC和Rt△AFD中AC=AD(已证)AF=AF(公共边)∴Rt△AFC≌Rt△AFD(HL)∴CF=FD(全等三角形的对应边相等)∴点F是CD的中点请你谈谈收获感想小结:1、全等三角形的定义,性质,判定方法。2、证明题的方法①要证什么②已有什么③还缺什么④创造条件3、添加辅助线归纳:①准备条件:证全等
7、时要用的间接条件要先证好;②三角形全等书写三步骤:写出在哪两个三角形中摆出三个条件用大括号括起来写出全等结论证明全等的书写步骤:布置作业教科书复习题12第3、4、7、8、9题.
此文档下载收益归作者所有