数学人教版八年级上册利用轴对称解决最短路径问题.ppt

数学人教版八年级上册利用轴对称解决最短路径问题.ppt

ID:48464831

大小:199.00 KB

页数:23页

时间:2020-01-18

数学人教版八年级上册利用轴对称解决最短路径问题.ppt_第1页
数学人教版八年级上册利用轴对称解决最短路径问题.ppt_第2页
数学人教版八年级上册利用轴对称解决最短路径问题.ppt_第3页
数学人教版八年级上册利用轴对称解决最短路径问题.ppt_第4页
数学人教版八年级上册利用轴对称解决最短路径问题.ppt_第5页
资源描述:

《数学人教版八年级上册利用轴对称解决最短路径问题.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、13.4课题学习利用轴对称解决最短路径问题年级:八年级版本:人教2011八年级数学单位:龙里县民族完全中学姓名:刘治英如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?两点之间,线段最短①②③(Ⅰ)两点在一条直线异侧问题1:如图,某天然气公司分别要向两个新建住宅小区提供天然气,需要在主天然气管道上修建一个泵站,问泵站修在主管道的什么地方,可使所用的输气管线最短?P连接AB,线段AB与直线L的交点P,就是所求。思考???为什么这样做就能得到最短距离呢?根据:两点之间线段最短.引言:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与

2、直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.引入新知问题3:如图所示,问泵站修在主管道的什么地方,可使所用的输气管线最短?探索新知BAl追问:这是一个实际问题,你打算首先做什么?将A,B两地抽象为两个点,将河l抽象为一条直线.探索新知B··Al(1)从A地出发,到河边l寻找到修建泵站点,然后到B地;(2)在河边的地点有无穷多处,把这些地点与A,B连接起来的两条线段的长度之和,就是从A地到饮马地点,再回到B地的路程之和;探索新知追问2:你能用自己的语言说明这

3、个问题的意思,并把它抽象为数学问题吗?探索新知追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小(如图).BAlC追问1对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?探索新知问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·追问2你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?探索新

4、知问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.探索新知问题2如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?B·lA·B′C探索新知问题3你能用所学的知识证明AC+BC最短吗?B·lA·B′C证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′

5、+BC′=AC′+B′C′.探索新知问题3你能用所学的知识证明AC+BC最短吗?B·lA·B′CC′探索新知问题3你能用所学的知识证明AC+BC最短吗?B·lA·B′CC′证明:在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC+BC,就说明AC+BC最小.探索新知B·lA·B′CC′追问1证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里的“C′”的作用是什么?探索新知追问2回顾前面的探究过程,我们是通过怎样的过程

6、、借助什么解决问题的?B·lA·B′CC′典例分析:例1:例2:课堂练习:练习1、如图,直线L是一条河,P、Q是两个村庄,欲在L上的某处修建一个水泵站,向P、Q两地供水,现有四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()练习2:如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再返回P处,请画出旅游船的最短路径.师生小结:我们利用做对称点(轴对称变换)将直线同侧两点的情况转化为较为简单的直线异侧两点的情况,利用“两点之间线段最短”可以将“折”的线转化为“直”的线。原理:两点之间,线段最短.方法:同侧—〉异侧“折”—〉“直”课后作业

7、:谢谢!再见!!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。