欢迎来到天天文库
浏览记录
ID:48403281
大小:193.50 KB
页数:19页
时间:2020-01-19
《数学人教版九年级上册24.1.3 弧、弦、圆心角.1.3弧、弦、圆心角课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人教版九年级上册24.1.3弧、弦、圆心角排山中学周冬英广东省怀集县凤岗镇初级中学黄柳燕一、学习目标1、理解圆的旋转不变性,掌握圆心角的概念以及弧、弦、圆心角之间的等量关系;2、能运用弧、弦、圆心角之间的相等关系解决有关的证明、计算问题.圆是中心对称图形吗?它的对称中心在哪里?·圆是中心对称图形,它的对称中心是圆心.思考:·圆心角:我们把顶点在圆心的角叫做圆心角.∠AOB为圆心角概念:圆心角∠AOB所对的弦为AB,所对的弧为AB。⌒图1广东省怀集县凤岗镇初级中学黄柳燕练一练如图2,BC是⊙O的直径,则图中所有的
2、圆心角分别为(填小于180°的角)图2任意给圆心角,对应出现三个量:圆心角弧弦·OBA探究:疑问:这三个量之间会有什么关系呢?如图,将圆心角∠AOB绕圆心O旋转到∠A1OB1的位置,你能发现哪些等量关系?为什么?·OABA1B1∵∠AOB=∠A1OB1∴AB=A1B1,AB=A1B1.⌒⌒·OAB·OABA1·O1B1·如图,⊙O与⊙O1是等圆,∠AOB=∠A1OB1=600,请问上述结论还成立吗?为什么?∵∠AOB=∠A1OB1∴AB=A1B1,AB=A1B1.⌒⌒OαABA1B1α在同圆或等圆中,相等的圆心
3、角所对的弧相等,所对的弦相等.归纳:∵∠AOB=∠A1OB1∴AB=A1B1,AB=A1B1.⌒⌒圆心角定理思考:在同圆或等圆中,如果两条弧相等,你能得什么结论?在同圆或等圆中,如果两条弦相等呢?OαABA1B1α同圆或等圆中,两个圆心角、两条圆心角所对的弧、两条圆心角所对的弦中如果有一组量相等,它们所对应的其余各组量也相等。延伸:(1)圆心角(2)弧(3)弦知一得二等对等定理整体理解:OαABA1B1α1、如图3,AB、CD是⊙O的两条弦。(1)如果AB=CD,那么,。(2)如果弧AB=弧CD,那么,。(3)
4、如果∠AOB=∠COD,那么,。(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?巩固:证明:∵AB=AC∴AB=AC,△ABC是等腰三角形又∠ACB=60°∴△ABC是等边三角形,AB=BC=CA∴∠AOB=∠BOC=∠AOC例1如图1,在⊙O中,AB=AC,∠ACB=60°,求证∠AOB=∠BOC=∠AOC。例题:⌒⌒⌒⌒OBCA2、如图4,AB是⊙O的直径,BC=CD=DE,∠COD=35°,求∠AOE的度数。OABEDC证明:∵BC=CD=DE∴∠COB=∠COD=∠DOE
5、=35°∴∠AOE=1800-∠COB-∠COD-∠DOE=750⌒⌒⌒⌒⌒⌒3、如图6,AD=BC,那么比较AB与CD的大小.ODCAB⌒⌒4、如图7所示,CD为⊙O的弦,在CD上取CE=DF,连结OE、OF,并延长交⊙O于点A、B.(1)试判断△OEF的形状,并说明理由;(2)求证:AC=BD⌒⌒EFOABCD5、如图,等边△ABC的三个顶点A、B、C都在⊙O上,连接OA、OB、OC,延长AO分别交BC于点P,交BC于点D,连接BD、CD.(1)判断四边形BDCO的形状,并说明理由;(2)若⊙O的半径为r,
6、求△ABC的边长⌒BCAOPD1、三个元素:圆心角、弦、弧归纳:2、三个相等关系:OαABA1B1α(1)圆心角相等(2)弧相等(3)弦相等知一得二
此文档下载收益归作者所有