欢迎来到天天文库
浏览记录
ID:48226631
大小:225.00 KB
页数:14页
时间:2019-11-18
《全国通用版2019版高考数学大一轮复习第九章平面解析几何第8节圆锥曲线的综合问题学案文新人教A版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第8节 圆锥曲线的综合问题最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知识梳理1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程,即消去y,得ax2+bx+c=0.(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则:Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,
2、b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则
3、AB
4、=
5、x1-x2
6、=·=·
7、y1-y2
8、=·.[常用结论及微点提醒]1.直线与椭圆位置关系的有关结论(1)过椭圆外一点总有两条直线与椭圆相切;(2)过椭圆上一点有且仅有一条直线与椭圆相切;(3)过椭圆内一点的直线均与椭圆相交.2.直线与抛物线位置关系的有关结论(1
9、)过抛物线外一点总有三条直线和抛物线有且只有一个公共点,两条切线和一条与对称轴平行或重合的直线;(2)过抛物线上一点总有两条直线与抛物线有且只有一个公共点,一条切线和一条与对称轴平行或重合的直线;(3)过抛物线内一点只有一条直线与抛物线有且只有一个公共点,一条与对称轴平行或重合的直线.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.( )(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.( )(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C只有一个公共点.( )(4)如果
10、直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长
11、AB
12、=
13、y1-y2
14、.( )解析 (2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.答案 (1)√ (2)× (3)× (4)√2.直线y=kx-k+1与椭圆+=1的位置关系为( )A.相交B.相切C.相离D.不确定解析 直线y=kx-k+1=k(x-1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.答案 A3.双曲线-=1的焦点到渐近线的距离为( )A
15、.2B.2C.D.1解析 ∵双曲线-=1的一个焦点为F(4,0),其中一条渐近线方程为y=x,∴点F到x-y=0的距离为=2.答案 A4.过抛物线y=2x2的焦点的直线与抛物线交于A(x1,y1),B(x2,y2)两点,则x1x2等于________.解析 易知抛物线y=2x2的焦点为,设过焦点的直线的斜率为k,则其方程为y=kx+,由得2x2-kx-=0,故x1x2=-.答案 -5.已知F1,F2是椭圆16x2+25y2=1600的两个焦点,P是椭圆上一点,且PF1⊥PF2,则△F1PF2的面积为________.解析 由题意可得
16、PF1
17、+
18、PF2
19、=2a=20,
20、PF
21、1
22、2+
23、PF2
24、2=
25、F1F2
26、2=4c2=144=(
27、PF1
28、+
29、PF2
30、)2-2
31、PF1
32、·
33、PF2
34、=202-2
35、PF1
36、·
37、PF2
38、,解得
39、PF1
40、·
41、PF2
42、=128,所以△F1PF2的面积为
43、PF1
44、·
45、PF2
46、=×128=64.答案 64考点一 直线与圆锥曲线的位置关系【例1】在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.解 (1)椭圆C1的左焦点为F1(-1,0),∴c=1,又点P(0,1)在
47、曲线C1上,∴+=1,得b=1,则a2=b2+c2=2,所以椭圆C1的方程为+y2=1.(2)由题意可知,直线l的斜率显然存在且不等于0,设直线l的方程为y=kx+m,由消去y,得(1+2k2)x2+4kmx+2m2-2=0.因为直线l与椭圆C1相切,所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.整理得2k2-m2+1=0.①由消去y,得k2x2+(2km-4)x+m2=0.因为直线l与抛物线C2相切,所以Δ2=(2km-4)2-4k2m2=0,整理得km=1.②综合①②,解得或所以直线l的方程为y=
此文档下载收益归作者所有