欢迎来到天天文库
浏览记录
ID:48190976
大小:5.50 MB
页数:29页
时间:2020-01-18
《5三角函数的应用.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.5三角函数的应用导入新课讲授新课当堂练习课堂小结第一章直角三角形的边角关系1.正确理解方位角、仰角和坡角的概念;(重点)2.能运用解直角三角形知识解决方位角、仰角和坡角的问题.(难点)学习目标情境引入我们已经知道轮船在海中航行时,可以用方位角准确描述它的航行方向.那你知道如何结合方位角等数据进行计算,帮助轮船在航行中远离危险吗?引例如图,一船以20nmile/h的速度向东航行,在A处测得灯塔C在北偏东60°方向上,继续航行1h到达B处,再测得灯塔C在北偏东30°方向上.已知灯塔C四周10nmile内有暗礁,问这船继续向东航行,是否安全?ACB60°与方位角
2、有关的实际问题一讲授新课D【分析】这船继续向东航行是否安全,取决于灯塔C到AB航线的距离是否大于10nmile.北东解:由点C作CD⊥AB,设CD=x,则在Rt△ACD中,在Rt△BCD中,解得所以,这船继续向东航行是安全的.ACBD30°60°北东由AB=AD-BD,得如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?65°34°PBCA试一试解:如图,在Rt△APC中,PC=PA·cos(90°-65°)=80
3、×cos25°≈80×0.91=72.8在Rt△BPC中,∠B=34°当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.65°34°PBCA利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.方法归纳例1如图所示,为了测量山的高度AC,在水平面B处测得山顶A的仰角为30°,AC⊥BC,自B沿着BC方向向前走1000m,到达D处,又测得山顶A的仰角为45°
4、,求山高.(结果保留根号)分析:要求AC,无论是在Rt△ACD中,还是在Rt△ABC中,只有一个角的条件,因此这两个三角形都不能解,所以要用方程思想,先把AC看成已知,用含AC的代数式表示BC和DC,由BD=1000m建立关于AC的方程,从而求得AC.仰角和俯角问题二解:在Rt△ABC中,在Rt△ACD中,∴BD=BC-DC例2如图,飞机A在目标B正上方1000m处,飞行员测得地面目标C的俯角为30°,则地面目标B,C之间的距离是________.解析:由题意可知,在Rt△ABC中,∠B=90°,∠C=∠CAD=30°,AB=1000m,【方法总结】解此类问题
5、,首先要找到合适的直角三角形,然后根据已知条件解直角三角形.例3热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m).分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,α=30°,β=60°.Rt△ABD中,α=30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.ABCDαβ仰角水平线俯角解:如图,α=30°,β=60°,AD=120.答:这栋楼高约为277.1
6、m.ABCDαβ建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角为54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m).ABCD40m54°45°ABCD40m54°45°解:在等腰三角形BCD中∠ACD=90°,BC=DC=40m.在Rt△ACD中,∴AB=AC-BC=55.2-40=15.2答:旗杆的高度为15.2m.练一练利用坡角解决实际问题三例4一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45°和30°,求路基下底的宽(精确到0.1米,).45°30°4米12米ABCD解:作DE⊥AB,
7、CF⊥AB,垂足分别为E、F.由题意可知DE=CF=4(米),CD=EF=12(米).在Rt△ADE中,在Rt△BCF中,同理可得因此AB=AE+EF+BF≈4+12+6.93≈22.93(米).答:路基下底的宽约为22.93米.45°30°4米12米ABCEFD1.如图1,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=_________米.2.如图2,两建筑物AB和CD的水平距离为30米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为_____米.100当堂练习图1
8、图2BCBC3.如图3,从地面上的C,
此文档下载收益归作者所有