资源描述:
《2019-2020年高二上学期期末考试 数学文 含答案(IV)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高二上学期期末考试数学文含答案(IV)一、选择题(每题5分,共60分)1.对于实数是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.下列双曲线,离心率的是() A. B.C. D.3.设命题是的充要条件;命题,则()A.为真B.为真C.真假D.均为假4.设椭圆的标准方程为,若其焦点在轴上,则的取值范围是()A.B.C.D.5.抛物线上一点P到轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.126.程序框图如图所示,则该
2、程序框图运行后输出的S是()A.B.-3C.2D.7.已知双曲线的离心率为,且它的一条准线与抛物线的准线重合,则此双曲线的方程是()A.B.C.D.8.下列有关命题的说法中,正确的是()A.命题的否命题为。B.的充分不必要条件。C.命题。D.命题的逆命题为真命题。9.某比赛中,七位评委为某个节目打出的分数如右图茎叶统计图所示,去掉一个最高分和一个最低分后所剩数据的平均数和方差分别是()A.84,4.84B.84,16C.85,1.6D.85,410.等轴双曲线C的中心在原点,焦点在轴上,C与抛物
3、线的准线交于A,B两点,,则C的实轴长为()A.2B.C.4D.11.晓刚5次上学途中所花时间(单位:分钟)分别为,已知这组数据的平均数为10,方差为2,则的值为()A.1B.2C.3D.412.设是椭圆E:的左右焦点,P在直线上一点,是底角为的等腰三角形,则椭圆E的离心率为()A.B.C.D.二、填空题(本题共4小题,每题5分,共20分)13.抛物线C:的焦点坐标为14.将一个容量为M的样本分成3组,已知第一组的频数为10,第二,三组的频率分别为0.35和0.45,则M=.15.命题,命题,若
4、的必要不充分条件,则16.已知点A,B是双曲线上的两点,O为原点,若,则点O到直线AB的距离为三、解答题(本题共6小题,共70分)17.(本小题满分10分)国家有甲,乙两个射击队,若两个队共进行了8次热身赛,各队的总成绩见下表:甲队403390397404388400412406乙队417401410416406421398411分别求两个队总成绩的样本平均数和样本方差,根据计算结果,若选一个代表队参加奥运会比赛,你认为应该选哪一个队?18.(本小题满分12分)设命题是减函数,命题:关于的不等式
5、的解集为,如果“或”为真命题,“且”为假命题,求实数的取值范围.19.(本小题满分12分)xx年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:(1)试确定x,y的值,并写出该样本的众数和中位数(不必写出计算过程);(2)完成相应的频率分布直方图.(3)求出样本的平均数,并
6、根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.20.已知平面内一动点P到F(1,0)的距离比点P到轴的距离少1.(1)求动点P的轨迹C的方程;(2)过点F的直线交轨迹C于A,B两点,交直线于点,且,,求的值。21.(本小题满分12分)双曲线的离心率为2,坐标原点到直线AB的距离为,其中A,B.(1)求双曲线的方程;(2)若是双曲线虚轴在轴正半轴上的端点,过作直线与双曲线交于两点,求时,直线的方程.22.(本小题满分12分)已知椭圆的离心率,A,B
7、分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.(1)求椭圆的方程;(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.鹤岗一中xx~xx上学期期末考试高二数学(文科)试题答案一.选择题:ABACBAABCDDB二.填空题:13.(0,-2)14.5015.16.三.解答题:17.-----------4分------------8分选乙----------------10分18.若命题:是减函数真命题,则,-----------2分若命题:关于的不等式的
8、解集为为真命题,则,则.---4分又∵“或”为真命题,“且”为假命题,则,恰好一真一假-------6分当命题为真命题,命题为假命题时,----------8分当命题为假命题,命题为真命题时,,---------10分故满足条件的实数的取值范围是.---------12分19.解:(1),-------------2分众数为22.5微克/立方米,中位数为37.5微克/立方米.----------4分(2)其频率分布直方图如图所示:图略-------------8分(3)样本的平均数为------