欢迎来到天天文库
浏览记录
ID:47744338
大小:411.50 KB
页数:15页
时间:2019-11-09
《2019-2020年高三下学期第一次调研(一)考试数学(文)试题 含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高三下学期第一次调研(一)考试数学(文)试题含解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则的子集可以是A.B.C.D.【答案】D【解析】试题分析:A{2,4},各选项中只有D符合.考点:集合运算.2.若复数是虚数单位)是纯虚数,则的值是A.B.C.D.3.已知抛物线,则A.它的焦点坐标为B.它的焦点坐标为C.它的准线方程是D.它的准线方程是4.下列说法中,不正确的是A.“”是“”的必要不充分条件B.命题“若都是奇数,则是奇数”的否命题是“若不都是奇数,则不是奇数”C.命题或,则使或D.命题
2、若回归方程为,则与正相关;命题:若,则,则为真命题5.已知倾斜角为的直线与直线垂直,则的值为A.B.C.D.6.给出以下数阵,按各数排列规律,则的值为A.B.C.D.326【答案】C【解析】试题分析:根据图中数字发现,这组数具备的特征是每一行的第一个数和最后一个数都是该行的行数,中间的每个数等于它肩上的上一行两个相邻数之积再加1,故.考点:归纳推理.7.运行如下程序框图:若输出的的值为12,则判断框中的值可以是A.2B.3C.4D.58.已知,则直线与圆相离概率为A.B.C.D.9.已知向量,则函数的最小正周期与最大值分别为A.B.C.D.【答案】B【解析】试题分析:,,故的最小正周期T=,
3、最大值为考点:1.向量的坐标运算;2.三角函数的图象与性质.10.已知一个几何体的三图如图所示,山该几何体的体积为A.B.C.D.11.设分别为双曲线的左右顶点,若双曲线上存在点使得两直线斜率,则双曲线的离心率的取值范围为A.B.C.D.12.已知定义域为的函数,若存在开区间和常数,使得任意,都有,且对任意,都有恒成立,则称函数为区间上的“型”函数,给出下列函数:①;②;③;④其中是区间上的“型”函数的函数的个数为A.0B.1C.1D.3第Ⅰ卷(非选择题90分)二、填空题:本大题共4小题,第小题5分,共20分,请将正确答案填在题中横线上.13.抽测100名学生的身高(单位:cm),其中频率分
4、布直方图如图所示,则这100名学生中,身高不低于160cm的人数为.14.已知满足,,记的最大值为,则函数(且)的图象所过定点坐标为.15.已知函数是定义在上且图象连续的奇函数,当时,,则的值为.【答案】【解析】试题分析:由为奇函数且图象连续,可得,解得,所以,,所以.考点:函数的奇偶性及其表示.16.在锐角中,内角、、的对边分别为、、,已知,则周长的取值范围为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设数列满足,且对任意,函数满足.(1)求数列的通项公式;(2)设,记数列的前项和为,求证:.18.(本小题满分12分)微信是腾讯公司推出的一种手机通讯软件
5、,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:微信控非微信控合计男性262450女性302050合计5644100(1)根据以上数据,能否有﹪的把握认为“微信控”与“性别”有关?(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”和“非微信控”的人数;(3)从(2)中抽取的5人中再随机抽取3人赠送200元的
6、护肤品套装,求这2人中至少有1人为“非微信控”的概率.参考公式:,其中.19.(本小题满分12分)如图,已知四棱锥中,平面,底面是正方形,为上的动点,为棱的中点.(1)求证:平面;(2)试确定点的位置,使得平面平面,并说明理由.20.(本小题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆的长半轴这半径的圆与直线相切.(1)求椭圆标准方程;(2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.21.(本小题满分12分)已知函数,且曲线在点处的切线与直线平行.(1)求的值;(2)判断函数的单调性;(3)记,试证明:当时,.请考
7、生在第22、23、24题中任选一题作答,如果多答,则按所做的第一题记分.22.(本小题满分10分)自圆外一点引圆的两条割线和,如图所示,其中割线过圆心,.(1)求的大小;(2)分别求线段和的长度.【答案】(1);(2),.【解析】试题分析:(1)由可知,所以即23.(本小题满分10分)已知在直角坐标系中,圆的参数方程为为参数).(1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆的极坐标方程;(2)直线的坐标
此文档下载收益归作者所有