欢迎来到天天文库
浏览记录
ID:47577181
大小:84.00 KB
页数:6页
时间:2019-09-20
《直线与圆(谢胜芹)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时安排 2课时 从容说课 这部分内容包括直线和圆的三种位置关系,探索圆的切线的性质,探索圆的切线的判定方法,以及作三角形内切圆的方法. 首先让学生感受生活中反映:直线与圆位置关系的现象,然后让学生动手操作.在这一过程中引导学生归纳出直线与圆的几种位置关系,进一步归纳出直线与圆的不同位置关系中(d与r的大小关系,然后对d=r的情形特别关注,这就是圆和直线的相切关系,从而讨论得出切线的性质,再通过旋转实验的办法探索切线的判定条件.在此基础上能作出三角形的内切圆.并掌握三角形的内心定义. 在教学中主要由学生探索归纳,当遇到困难时教师给予适当指导,
2、这样可以充分发挥学生的主观能动性,还能增进同学们的友谊,培养学生的合作能力. 课题 §3.5.1直线和圆的位置关系(一) 教学目标 (一)教学知识点 1.理解直线与圆有相交、相切、相离三种位置关系. 2.了解切线的概念,探索切线与过切点的直径之间的关系. (二)能力训练要求 1.经历探索直线与圆位置关系的过程,培养学生的探索能力. 2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化. (三)情感与价值观要求 通过探索直线与圆的位置关系的过程,体验数学活
3、动充满着探索与创造,感受数学的严谨性以及数学结论的确定性. 在数学学习活动中获得成功的体验.锻炼克服困难的意志,建立自信心. 教学重点 经历探索直线与圆位置关系的过程. 理解直线与圆的三种位置关系. 了解切线的概念以及切线的性质. 教学难点 经历探索:直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系. 探索圆的切线的性质. 教学方法 教师指导学生探索法. 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些? [生]圆是平面上到定点的距离等于定长的所有点组成的图
4、形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内. [师]本节课我们将类比地学习直线和圆的位置关系. Ⅱ.新课讲解 1.复习点到直线的距离的定义 [生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离. 如图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离. 2.探索直线与圆的三种
5、位置关系 [师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系? [生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系. [师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢? [生]有三种位置关系. [师]直线和圆有三种位置关系,如下图: 它们分别是相交、相切、相离. 当直线与圆相
6、切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangentline). 当直线与圆有两个公共点时,叫做直线和圆相交. 当直线与圆没有公共点时,叫做直线和圆相离. 因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗? [生]当直线与圆有唯一公共点时,这时直线与圆相切; 当直线与圆有两个公共点时,这时直线与圆相交; 当直线与圆没有公共点时,这时直线与圆相离. [师]能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢? [生]如上图中
7、,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,dr,因此可以用d与r间的大小关系断定直线与圆的位置关系. [师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定. (1)从公共点的个数来判断; 直线与圆有两个公共点时,直线与圆相交; 直线与圆有唯一公共点时,直线与圆相切; 直线与圆没有公共点时,直线与圆相离. (2)从点到直线的距离(d与半径r的大小关系来判断: d8、相切; d>r时,直线与圆相离. 3.议一议 (1)你能举出生活中直线与圆相交、相切、相
8、相切; d>r时,直线与圆相离. 3.议一议 (1)你能举出生活中直线与圆相交、相切、相
此文档下载收益归作者所有