四边形地旋转与翻折

四边形地旋转与翻折

ID:47086545

大小:378.63 KB

页数:12页

时间:2019-07-22

四边形地旋转与翻折_第1页
四边形地旋转与翻折_第2页
四边形地旋转与翻折_第3页
四边形地旋转与翻折_第4页
四边形地旋转与翻折_第5页
资源描述:

《四边形地旋转与翻折》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用文档(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。例1.如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。经过旋转变化,将图(2-1-a)中

2、的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。例2.如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD面积。8标准文案实用文档 (三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=Rt∠,P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。例3.如图,在ΔABC中,∠ACB=900,BC

3、=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。求∠BPC的度数。平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系.这类实体的特点是:结论开放,注重考查学生的猜想、探索能力;便于与其它知识相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力.在这一理念的引导下,近几年中考加大了这方面的考察力度,特别是2006年中考,这一部分的分值比前两年大幅度提高。   为帮助广大考生把握好平移,旋转和翻折的特征,

4、巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面以近几年中考题为例说明其解法,供大家参考。标准文案实用文档一.平移、旋转平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.“一定的方向”称为平移方向,“一定的距离”称为平移距离。平移特征:图形平移时,图形中的每一点的平移方向都相同,平移距离都相等。旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相

5、等,都等于图形的旋转角。例1.如图,将ΔABC绕顶点A顺时针旋转60º后得到ΔAB´C´,且C´为BC的中点,则C´D:DB´=()A.1:2B.1:C.1:D.1:3点评:本例考查灵活运用旋转前后两个图形是全等的性质、等边三角形的判断和含30º角的直角三角形的性质的能力,解题的关键是发现ΔAC´C是等边三角形.二、翻折  翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化。翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直

6、线就是对称轴。解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。   翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。例2.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于()A.30°B.45°C.60°D.75°标准文案实用文档点评:本例考查灵活运用翻折前后两个图形是全等的性质的能力,解题的关键是发现∠EAD=∠EAD′,∠AED=∠AED′ 点评:图

7、形沿某条线折叠,这条线就是对称轴,利用轴对称的性质并借助方程的的知识就能较快得到计算结果。  由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数学教学,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考查到了.因此在平时抓住这三种运动的特征和基本解题思路来指导我们的复习,将是一种事半功倍的好方法。平移与旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。题型多以填空题、计算题呈现。在解答此类问题时,我们通常将其转换成全等求解。根据变换的特

8、征,找到对应的全等形,通过线段、角的转换达到求解的目的。例1:如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心,逆时针旋转90°至ED,连结AE、CE,则△ADE的面积是()A1B2C3D不能确定点评:明确△ADE的边AD上的高的概念不要误写成DE,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。