高考复习指导讲义第十一章参数方程、极坐标 一、考纲要求 1.理解参数 ...

高考复习指导讲义第十一章参数方程、极坐标 一、考纲要求 1.理解参数 ...

ID:47069864

大小:246.00 KB

页数:10页

时间:2019-07-14

高考复习指导讲义第十一章参数方程、极坐标 一、考纲要求 1.理解参数 ..._第1页
高考复习指导讲义第十一章参数方程、极坐标 一、考纲要求 1.理解参数 ..._第2页
高考复习指导讲义第十一章参数方程、极坐标 一、考纲要求 1.理解参数 ..._第3页
高考复习指导讲义第十一章参数方程、极坐标 一、考纲要求 1.理解参数 ..._第4页
高考复习指导讲义第十一章参数方程、极坐标 一、考纲要求 1.理解参数 ..._第5页
资源描述:

《高考复习指导讲义第十一章参数方程、极坐标 一、考纲要求 1.理解参数 ...》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高考复习指导讲义第十一章参数方程、极坐标一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点P0(x0,y0),倾斜角为α的直线l(如图)的参数方程是(t为参数)①(2)一般式过定点P0(x0

2、,y0)斜率k=tanα=的直线的参数方程是(t不参数)②在一般式②中,参数t不具备标准式中t的几何意义,若a2+b2=1,②即为标准式,此时,|t|表示直线上动点P到定点P0的距离;若a2+b2≠1,则动点P到定点P0的距离是|t|.直线参数方程的应用:设过点P0(x0,y0),倾斜角为α的直线l的参数方程是(t为参数)若P1、P2是l上的两点,它们所对应的参数分别为t1,t2,则(1)P1、P2两点的坐标分别是(x0+t1cosα,y0+t1sinα)(x0+t2cosα,y0+t2sinα);(2)|P1P2|=|t1-t2|;(

3、3)线段P1P2的中点P所对应的参数为t,则t=中点P到定点P0的距离

4、PP0

5、=

6、t

7、=

8、

9、(4)若P0为线段P1P2的中点,则t1+t2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r的圆的参数方程是(φ是参数)φ是动半径所在的直线与x轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆(a>b>0)的参数方程是(φ为参数)椭圆(a>b>0)的参数方程是(φ为参数)3.极坐标极坐标系在平面内取一个定点O,从O引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标

10、系,O点叫做极点,射线Ox叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标:设M点是平面内任意一点,用ρ表示线段OM的长度,θ表示射线Ox到OM的角度,那么ρ叫做M点的极径,θ叫做M点的极角,有序数对(ρ,θ)叫做M点的极坐标.(见图)注意:点的极坐标不唯一!——你能说出理由吗?极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x轴的正半轴重合;③两种坐标系中取相同的长度单位.(2)互化公式三、知识点、能力点提示(一)曲线的参数方程,

11、参数方程与普通方程的互化1、在圆x2+y2-4x-2y-20=0上求两点A和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:(为参数)则圆上点P坐标为(2+5cos,1+5sin),它到所给直线之距离d=故当cos(φ-θ)=1,即φ=θ时,d最长,这时,点A坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d最短,这时,点B坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化2、极坐标方程ρ=所确定的图形是()A.直线B.椭圆C.双曲线D.抛物线(三)综合例题赏析

12、3、椭圆()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得∴a2=25,b2=9,得c2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy坐标系中,两焦点坐标是(3,3)和(3,-5).应选B.4、参数方程()A.双曲线的一支,这支过点(1,)B.抛物线的一部分,这部分过(1,)C.双曲线的一支,这支过(-1,)D.抛物线的一部分,这部分过(-1,)解:由参数式得x2=1+sinθ=2y(x>0)即y=x2(x>0).∴应选B.

13、5、在方程(θ为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(,)C.(,)D.(1,0)解:y=cos2=1-2sin2=1-2x2将x=代入,得y=∴应选C.6、曲线的极坐标方程ρ=4sinθ化成直角坐标方程为()A.x2+(y+2)2=4B.x2+(y-2)2=4C.(x-2)2+y2=4D.(x+2)2+y2=4解:将ρ=,sinθ=代入ρ=4sinθ,得x2+y2=4y,即x2+(y-2)2=4.∴应选B.7、极坐标ρ=cos()表示的曲线是()A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=(cos

14、θ+sinθ)=ρcosθ+ρsinθ,∴普通方程为(x2+y2)=x+y,表示圆.应选D.8、在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是()A.ρsinθ=2B.ρcosθ=2C.ρcosθ=-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。