欢迎来到天天文库
浏览记录
ID:47028899
大小:203.50 KB
页数:8页
时间:2019-06-29
《高中数学第二章随机变量及其分布章末复习学案新人教a版选修2_32》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章随机变量及其分布1.离散型随机变量及其分布列(1)随机变量:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.通常用字母X,Y,ξ,η,…等表示.(2)离散型随机变量:所有取值可以一一列出的随机变量称为离散型随机变量.(3)离散型随机变量的分布列:一般地,若离散型随机变量X可能取的不同值为x1,x2…,xi,…xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,以表格的形式
2、表示如下:Xx1x2…xi…xnPp1p2…pi…pn我们将上表称为离散型随机变量X的概率分布列,简称为X的分布列.有时为了简单起见,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.(4)离散型随机变量的分布列的性质:①pi≥0,i=1,2,…,n;②pi=1.(5)常见的分布列:8两点分布:如果随机变量X的分布列具有下表的形式,则称X服从两点分布,并称p=P(X=1)为成功概率.X01P1-pp两点分布又称0-1分布,伯努利分布.超几何分布:一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,
3、则事件{X=k}发生的概率为P(X=k)=,k=0,1,2,…,m,即X01…mP…其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.2.二项分布及其应用(1)条件概率:一般地,设A和B是两个事件,且P(A)>0,称P(B
4、A)=为在事件A发生的条件下,事件B发生的条件概率.P(B
5、A)读作A发生的条件下B发生的概率.(2)条件概率的性质:①0≤P(B
6、A)≤1;②必然事件的条件概率为1,不可能事件的条件概率为0;③如果B和C是两个互斥事件,则
7、P(B∪C
8、A)=P(B
9、A)+P(C
10、A).(3)事件的相互独立性:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.如果事件A与B相互独立,那么A与,与B,与也都相互独立.(4)独立重复试验:一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(5)二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项
11、分布,记作X~B(n,p),并称p为成功概率.两点分布是当n=1时的二项分布,二项分布可以看成是两点分布的一般形式.3.离散型随机变量的均值与方差(1)均值、方差:一般地,若离散型随机变量X的分布列为8Xx1x2…xi…xnPp1p2…pi…pn则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.称D(X)=(xi-E(X))2pi为随机变量X的方差,为随机变量X的标准差.(2)均值与方差的性质:若Y=aX+b,其中a,b是常数,X是随机变量,则Y
12、也是随机变量,且E(aX+b)=aE(X)+b,D(aX+b)=a2D(X).(3)常见分布的均值和方差公式:①两点分布:若随机变量X服从参数为p的两点分布,则均值E(X)=p,方差D(X)=p(1-p).②二项分布:若随机变量X~B(n,p),则均值E(X)=np,方差D(X)=np(1-p).4.正态分布(1)正态曲线与正态分布:①正态曲线:我们把函数φμ,σ(x)=e-,x∈(-∞,+∞)(其中μ是样本均值,σ是样本标准差)的图象称为正态分布密度曲线,简称正态曲线,正态曲线呈钟形,即中间高,两边低.②正态分布:一般地
13、,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=φμ,σ(x)dx,则称随机变量X服从正态分布.正态分布完全由参数μ,σ确定,因此正态分布常记作N(μ,σ2).(2)正态曲线的特点:①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值;④曲线与x轴之间的面积为1.(3)μ和σ对正态曲线的影响:①当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;②当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表
14、示总体的分布越分散.8(4)正态分布的3σ原则:若随机变量X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值
此文档下载收益归作者所有