项分布与正态分布

项分布与正态分布

ID:47003648

大小:291.00 KB

页数:28页

时间:2019-12-03

项分布与正态分布_第1页
项分布与正态分布_第2页
项分布与正态分布_第3页
项分布与正态分布_第4页
项分布与正态分布_第5页
资源描述:

《项分布与正态分布》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、(了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题/利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义)10.9二项分布与正态分布1.相互独立事件的定义:设A,B为两个事件,如果P(A∩B)=P(A)P(B),则称事件A与事件B相互独立.若A与B是相互独立事件,A与,与B,与也相互独立.2.独立重复试验的定义在相同条件下做的n次试验称为n次独立重复试验.3.独立重复试验的概率公式一般地,在n次独立重复试验中,设事件A发生的次数为X,如果在每次试验中事件A发生的概率是p,那么在n次独立重复试验

2、,事件A恰好发生k次的概率P(X=k)=.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线就是(或近似地是)下列函数的图象:φμ,σ=f(x)=,(-∞<x<+∞),其中实数μ和σ(σ>0)为参数.我们称φμ,σ的图象为正态密度曲线.5.正态分布:一般地,如果对于任何实数a

3、布.记作N(μ,σ2).如果随机变量X服从正态分布,则记为X~N(μ,σ2)6.正态曲线的性质(1)曲线在x轴的上方,与x轴不相交.(2)曲线是单峰的,它关于直线x=μ对称.(3)曲线在x=μ处达到峰值.(4)曲线与x轴之间的面积为1.(5)μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中.1.标准正态分布的平均数与标准差分别为()A.0与1B.1与0C.0与0D.1与1解析:由标准正态分布的定义知.答案:A2.坛子里放有3个白球,2个黑球,从中进行不放回地摸球,用A1表示第一次摸得白球,A2表示

4、第二次摸得白球,则A1与A2是()A.互斥事件B.相互独立事件C.对立事件D.不相互独立事件答案:D3.如果ξ~B,则使P(ξ=k)取最大值的k值为()A.3B.4C.5D.3或4解析:采取特殊值法.∵P(ξ=3)=,P(ξ=4)=,P(ξ=5)=从而易知P(ξ=3)=P(ξ=4)>P(ξ=5).答案:D4.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种该疫苗,至少有3人出现发热反应的概率为________.(精确到0.01)解析:由已知p=0.80,则P5(3)+P5(4)+P5(5)=0.94.答案:0.941.事件间的“互斥”与“相互独立”

5、是两个不同的概念,常因为将它们弄混而发生计算错误;两个相互独立事件不一定互斥即可能同时发生,而互斥事件不可能同时发生.2.再如三个事件两两独立,但三个条件不一定独立.【例1】3名战士射击敌机,1人专射驾驶员,1人专射油箱,1人专射发动机,命中的概率分别为、、,每个人射击是独立的,任1人射中,敌机被击落,求敌机被击落的概率.解答:解法一:本题等价于至少有1人射中的概率.而至少有1人射中的对立事件是3人都未射中.设A、B、C表示3人射击1次都击中的事件,则表示3人射击都未击中的事件.而至少有一人射中的概率为P.∴P()=[1-P(A)][1-P(B)][1-P

6、(C)]=则P=1-P()=解法二:至少有1人击中包括3种情况:①1人击中;②2人击中;③3人都击中.∵射击1次,∴以上3种情况互斥.∴敌机被击落的概率是:P==变式1.在如右图所示的电路中,开关a,b,c开或关的概率都为,且相互独立,求灯亮的概率.解答:解法一:设事件A、B、C分别表示开关a,b,c关闭,则a,b同时关合或c关合时灯亮,即A·B·,A·B·C,或·B·C,A··C,·C之一发生,又因它们是互斥的,所以,所求概率为:P=P(A·B·)+P(·B·C)+P(A·B·C)+P(A··C)+P(··C)=P(A)·P(B)·P()+P()·P(B

7、)·P(C)+P(A)·P()·P(C)+P()·P()·P(C)+P(A)·P(B)·P(C)=5×()3=解法二:设A,B,C所表示的事件与解法一相同,若灯不亮则两条线路都不通,即c一定断开,a,b中至少有一个断开,而a,b中至少有一个断开的概率是:1-P(A·B)=1-P(A)·P(B)=.所以两条线路皆不通的概率为:于是,灯亮的概率为P=1.独立重复试验是独立事件同时发生的特殊情况.2.独立重复试验,是在相同的条件下重复地、各次相互独立地进行的一种试验.在这种试验中,每一次试验中只有两种结果,即某事件要么发生,要么不发生,并且在任何一次试验中发生的

8、概率都是一样的,牢记n次独立重复试验中某事件恰好发生k次的概率计算

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。