资源描述:
《《基本计数原理》(一)ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、分类计数原理与分步计数原理(一)岳问题1从岳阳到长沙,可以乘火车,也可以乘汽车。一天中,火车有3班,汽车有2班。那么一天中,乘坐这些交通工具从岳阳到长沙共有多少种不同的走法?长火车2火车1火车3汽车1汽车23+2=5(种)情景探究问题一的特点是什么?分类计数原理分类计数原理又称“加法原理”完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类方法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2++mn种不同的方法火车2火车1火车3问题2从岳阳到益阳,要从岳阳先乘火车到长沙,再于次日从长沙乘汽车到益阳。一天中,火车有
2、3班,汽车有2班,那么两天中,从岳阳到益阳共有多少种不同的走法?岳益长汽车2汽车1火车1-汽车1火车1-汽车2火车2-汽车1火车2-汽车2火车3-汽车1火车3-汽车2问题二的特点是什么?分步计数原理完成一件事,需要分成n个步骤,做第1步有 种不同的方法,做第2步有 种不同的方法……做第n步有 种不同的方法.那么完成这件事共有N= 种不同的方法.分步计数原理又叫作“乘法原理”理解分步计数原理⑴各个步骤之间相互依存,且方法总数是各个步骤的方法数相乘,所以这个原理又叫做乘法原理;(2)完成这件事的任何一种方法必须连续完成每一个步骤.分类计数原理与分步
3、计数原理的区别联系:分类计数原理与分步计数原理都是涉及完成一件事的不同方法的种数的问题。区别:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成。例1书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书。(1)从书架上任取一本书,有多少种取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?注意区别“分类”与“分步”典例分析解:(1)从第1层任取一本,有4种取法,从第2层任取一本,有3种取法,从第3层任取一本
4、,有2种取法,共有4+3+2=9种取法。答:从书架上任意取一本书,有9种不同的取法。(2)从书架的1、2、3层各取一本书,需要分三步完成,第1步,从第1层取1本书,有4种取法,第2步,从第2层取1本书,有3种取法,第3步,从第3层取1本书,有2种取法.由分步计数原理知,共有4×3×2=24种取法。答:从书架上的第1、2、3层各取一本书,有24种不同的取法。分类时要做到不重不漏分步时做到不缺步例2一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?本题的特点是数字可以重复使用,例如0000,1111,1212等等,与分步计
5、数原理比较,这里完成每一步的方法数m=10,有n=4个步骤,结果是总个数N=10×10×10×10=104解:由于号码锁的每个拨号盘有0到9这10个数字,每个拨号盘的数字有10种取法。根据分步计数原理,4个拨号盘上各取1数字组成的个数是答:可以组成10000个四位数字号码。N=104。典例分析3.四名研究生各从A、B、C三位教授中选一位作自己的导师,共有______种选法;三名教授各从四名研究生中选一位作自己的学生,共有_____种选法。2.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?答.:(10×9+10×9)/2=90(种).431.逸夫
6、教学楼共有3处楼梯口,问从1楼到5楼共有多少种不同的走法?答:3×3×3×3=34=81(种)34变式训练例3要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?解:从3名工人中选出2名分别上日班和晚班,可以看成是经过先选1名上日班,再选1名上晚班这两个步骤完成。先选1名上日班,共有3种选法;上日班的工人选定后再选1名上晚班,上晚班的工人有2种选法,根据分步计数原理,所求的不同的选法数是答:有6种不同的选法。典例分析日班晚班甲乙丙丙乙甲乙甲丙相应的排法不同排法如下图所示甲乙甲丙乙甲乙丙丙甲丙乙日班晚班例4用数字1,2,3,4,5可以组成多少个三位数(各
7、位上的数字允许重复)?解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法;第三步确定十位上的数字,同理,它也有5种选法。根据分步计数原理,得到组成的三位数的个数是:N=5×5×5=53=125答:可以组成125个三位数。1.一件工作可以用两种方法完成。有5人会用第一种方法完成,另有4人会用第二种方法完成。选出一个人来完成这件工作,共有多少种选法?2.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5