欢迎来到天天文库
浏览记录
ID:46936531
大小:439.00 KB
页数:17页
时间:2019-11-30
《2016年江西省南昌二中高三(上)第一次月考数学试卷(理科)(解析版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2015-2016学年江西省南昌二中高三(上)第一次月考数学试卷(理科)参考答案与试题解析 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y=lgx的定义域为A,B={x
2、0≤x≤1},则A∩B=( )A.(0,+∞)B.[0,1]C.[0,1)D.(0,1]【考点】交集及其运算.【专题】集合.【分析】求出函数y=lgx的定义域确定出A,找出A与B的交集即可.【解答】解:函数y=lgx中,x>0,即A=(0,+∞),∵B={x
3、0≤x≤1}=[0,1],∴A∩B=(0,1].故选:D【点评】此题考查了交集及其运算,
4、熟练掌握交集的定义是解本题的关键. 2.已知α为第二象限角,且,则tan(π+α)的值是( )A.B.C.D.【考点】诱导公式的作用;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】由α为第二象限角,根据sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而求出tanα的值,原式利用诱导公式化简,将tanα的值代入计算即可求出值.【解答】解:∵α为第二象限角,sinα=,∴cosα=﹣=﹣,∴tanα==﹣,则tan(π+α)=tanα=﹣.故选D【点评】此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键. 3.下列说法正确的是
5、( )A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】利用命题的定义判断A的正误;函数的极值的充要条件判断B的正误;命题的否定判断C的正误;四种命题的逆否关系判断D的正误;【解答】解:对于A,命题“若x2=1,则x=1”的否命题为:“若x2=1,
6、则x≠1”,不满足否命题的定义,所以A不正确;对于B,已知y=f(x)是R上的可导函数,则“f′(x0)=0”函数不一定有极值,“x0是函数y=f(x)的极值点”一定有导函数为0,所以已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件,正确;对于C,命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”,不满足命题的否定形式,所以不正确;对于D,命题“角α的终边在第一象限角,则α是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选:B.【点评】本题考查命题的真假的判断与应用,考查函数的极值
7、以及充要条件,四种命题的逆否关系,命题的否定,是基础题. 4.已知角α终边上一点P的坐标是(2sin2,﹣2cos2),则sinα等于( )A.sin2B.﹣sin2C.cos2D.﹣cos2【考点】任意角的三角函数的定义.【专题】三角函数的求值.【分析】由条件利用任意角的三角函数的定义,求得sinα的值.【解答】解:∵角α终边上一点P的坐标是(2sin2,﹣2cos2),∴x=2sin2,y=﹣2cos2,r=
8、OP
9、=2,∴sinα===﹣cos2,故选:D.【点评】本题主要考查任意角的三角函数的定义,属于基础题. 5.设a=log2,b=,c=lnπ,则( )A.c<a<bB
10、.a<c<bC.a<b<cD.b<a<c【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=log2<0,0<b=<1,c=lnπ>1,∴a<b<c.故选:C.【点评】本题考查了指数函数与对数函数的单调性,属于基础题. 6.设点P是曲线上的任意一点,P点处切线倾斜角为α,则角α的取值范围是( )A.B.C.D.【考点】利用导数研究曲线上某点切线方程;直线的倾斜角.【专题】计算题.【分析】求出曲线解析式的导函数,根据完全平方式大于等于0求出导函数的最小值,由曲线在P点切线的斜率为导函数的值,且直线的斜率等于其倾斜角的正切
11、值,从而得到tanα的范围,由α的范围,求出α的范围即可.【解答】解:∵y′=3x2﹣≥﹣,∴tanα≥﹣,又∵0≤α≤π,∴0≤α<或.则角α的取值范围是[0,)∪[,π).故选C.【点评】考查学生会利用导数求曲线上过某点切线方程的斜率,会利用切线的斜率与倾斜角之间的关系k=tanα进行求解. 7.将函数向右平移个单位,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)与,,x轴围成的图
此文档下载收益归作者所有