资源描述:
《2019届高考数学一轮复习 第七篇 立体几何与空间向量 第4节 直线、平面平行的判定与性质训练 理 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第4节 直线、平面平行的判定与性质【选题明细表】知识点、方法题号平行关系的基本问题1,2直线与平面平行的判定与性质3,4,5,6,7,9,10,13,14平面与平面平行的判定与性质8,11,12,13基础巩固(时间:30分钟)1.平面α∥平面β的一个充分条件是( D )(A)存在一条直线a,a∥α,a∥β(B)存在一条直线a,a⊂α,a∥β(C)存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α(D)存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l
2、,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.2.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④α内存在两条相交直线a,b,a∥β,b∥β.可以推出α∥β的是( C )(A)①③(B)②④(C)①④(D)②③解析:对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.3.(2017·合肥市二模)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( C )(A)0条(B)
3、1条(C)2条(D)1条或2条解析:如图所示,四边形EFGH为平行四边形,则EF∥GH.因为EF⊄平面BCD,GH⊂平面BCD,所以EF∥平面BCD.因为EF⊂平面ACD,平面BCD∩平面ACD=CD,所以EF∥CD,所以CD∥平面EFGH.同理AB∥平面EFGH.故选C.4.导学号38486145下面四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的是( A )(A)①②(B)①④(C)②③(D)③④解析:由线面平行的判定定理知图①②可得出AB∥平面MNP.5.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=A
4、F∶FD=1∶4,又H,G分别为BC,CD的中点,则( B )(A)BD∥平面EFGH,且四边形EFGH是矩形(B)EF∥平面BCD,且四边形EFGH是梯形(C)HG∥平面ABD,且四边形EFGH是菱形(D)EH∥平面ADC,且四边形EFGH是平行四边形解析:由AE∶EB=AF∶FD=1∶4知EF∥BD,且EF=BD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HG∥BD,且HG=BD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.6.如图所示,在正四棱柱ABCDA1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边
5、形EFGH及其内部运动,则M满足条件 时,有MN∥平面B1BDD1. 解析:由题意,得HN∥平面B1BDD1,FH∥平面B1BDD1.因为HN∩FH=H,所以平面NHF∥平面B1BDD1.所以当M在线段HF上运动时,有MN∥平面B1BDD1.答案:M∈线段HF7.空间四面体ABCD的两条对棱AC,BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是 .解析:设==k(06、∉β,过点P的直线m与α,β分别交于A,C,过点P的直线n与α,β分别交于B,D,且PA=6,AC=9,PD=8,则BD的长为 . 解析:如图1,因为AC∩BD=P,所以经过直线AC与BD可确定平面PCD.因为α∥β,α∩平面PCD=AB,β∩平面PCD=CD,所以AB∥CD.所以=,即=,所以BD=.如图2,同理可证AB∥CD.所以=,即=,所以BD=24.综上所述,BD=或24.答案:或24能力提升(时间:15分钟)9.导学号38486146在三棱锥SABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,点D,
7、E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为( A )(A)(B)(C)45(D)45解析:取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF∥DE,HF=DE,所以