欢迎来到天天文库
浏览记录
ID:45735728
大小:103.00 KB
页数:7页
时间:2019-11-17
《2018年秋高中数学 第一章 计数原理 1.2 排列与组合 1.2.1 第2课时 排列的综合应用学案 新人教A版选修2-3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 排列的综合应用学习目标:1.进一步理解排列的概念,掌握一些排列问题的常用解决方法.(重点)2.能应用排列知识解决简单的实际问题.(难点)[自主预习·探新知]1.排列数公式A=n(n-1)(n-2)…(n-m+1)=(n,m∈N*,m≤n)A=n·(n-1)·(n-2)·…·2·1=n!(叫做n的阶乘)另外,我们规定0!=1.2.排列应用题的最基本的解法(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素(又称元素分析法);或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置(又称位置分析法).(2)间接法:先不考虑附加条件,计算出总排列数,再减去不
2、合要求的排列数.3.解简单的排列应用题的基本思想[基础自测]1.从n个人中选出2个,分别从事两项不同的工作,若选派的种数为72,则n的值为( )A.6 B.8C.9D.12C [由A=72,得n(n-1)=72,解得n=9(舍去n=-8).]2.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________.【导学号:95032035】48 [从2,4中取一个数作为个位数字,有2种取法;再从其余四个数中取出三个数排在前三位,有A种排法.由分步乘法计数原理知,这样的四位偶数共有2×A=48个.]3.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且
3、B在A的右边,那么不同的排法种数有________种.24 [把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,共A=24种.]4.从4名男生和3名女生中选出3人,分别从事三种不同的工作,若这3人中至少有1名女生,则选派方案共有________种.186 [可选用间接法解决:先求出从7人中选出3人的方法数,再求出从4名男生中选出3人的方法数,两者相减即得结果.A-A=186(种).][合作探究·攻重难]无限制条件的排列问题 (1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书(每种不少于3本),要买3本送给3名同学,
4、每人各1本,共有多少种不同的送法?【导学号:95032036】[思路探究] (1)从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;(2)给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.[解] (1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是A=5×4×3=60,所以共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的每本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是5×5×5=125,所以共有
5、125种不同的送法.[规律方法]1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.[跟踪训练]1.将3张电影票分给10人中的3人,每人1张,共有________种不同的分法.720 [问题相当于从10个人中选出3个人,然后进行全排列,这是一个排列问题.故不同分法的种数为A=10×9×8=720.]排队问题 有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置.(2)全体排成一行,其中甲不在最左边,乙不在最右边.
6、(3)全体排成一行,其中男生必须排在一起.(4)全体排成一行,男、女各不相邻.(5)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.(6)排成前后二排,前排3人,后排4人.【导学号:95032037】[思路探究] 分析题意,确定限制条件→先排特殊位置或特殊元素→再排其它元素[解] (1)元素分析法:甲为特殊元素,故先安排甲,左、右、中共三个位置可供甲选择.有A种,其余6人全排列,有A种.由分步乘法计数原理得AA=2160种.(2)位置分析法:先排最左边,除去甲外,有A种,余下的6个位置全排列有A种,但应剔除乙在最右边的排法数AA种.则符合条件的排法共有AA-AA=3720种
7、.(3)捆绑法:将男生看成一个整体,进行全排列有A种排法,把这个整体看成一个元素再与其他4人进行全排列有A种排法,共有AA=720种.(4)插空法:先排好男生,然后将女生插入排男生时产生的四个空位,共有AA=144种.(5)定序排列用除法:第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此有A=N×A,∴N==840种.(6)分排问题直接法:由已知,7人排在7个位置,与无任何限制的排列相同,有A=5040种.注意:解(6)时易出现AA
此文档下载收益归作者所有