整式的乘除与因式分解全章复习

整式的乘除与因式分解全章复习

ID:45605328

大小:179.50 KB

页数:3页

时间:2019-11-15

整式的乘除与因式分解全章复习_第1页
整式的乘除与因式分解全章复习_第2页
整式的乘除与因式分解全章复习_第3页
资源描述:

《整式的乘除与因式分解全章复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、整式的乘除与因式分解全章复习【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4.理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式

2、分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(≠0,为正整数,并且).同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;3/31、计算下列各题:(1)(2)(3)(4)

3、【变式】当,=4时,求代数式的值.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”

4、连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:类型二、整式的乘除法运算2、解下列不等式.(1)(2)3、已知,求的值.【变式】(1)已知,求的值.(2)已知,,求的值.(3)已知,,求的值.3/3要点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释

5、:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:;两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.4、对任意整数,整式是否是10的倍数?为什么?【变式】解下列方程(组):5、已知,,求:(1);(2)要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项

6、式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法,分组分解法,十字相乘法,添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.6、分解因式:(1);(2).【变式】分解因式:(1)(2)(3)3/3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。