资源描述:
《2019-2020年高考数学大一轮复习 空间向量及其应用板块命题点专练(十二)理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学大一轮复习空间向量及其应用板块命题点专练(十二)理(含解析)命题点 向量法求空间角及应用命题指数:☆☆☆☆☆难度:中 题型:解答题1.(xx·福建高考)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.2.(xx·四川高考)三棱锥ABCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角ANPM的余弦值.3.
2、(xx·新课标全国卷Ⅰ)如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.4.(xx·天津高考)如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明:B1C1⊥CE;(2)求二面角B1CEC1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.5.(xx·安徽高考)如图,四棱柱ABCDA1B1
3、C1D1中,A1A⊥底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.答案命题点1.解:(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD.又CD⊂平面BCD,∴AB⊥CD.(2)过点B在平面BCD内作BE⊥BD,如图.由(1)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD,∴
4、AB⊥BE,AB⊥BD.以B为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则=(1,1,0),=,=(0,1,-1).设平面MBC的法向量n=(x0,y0,z0),则即取z0=1,得平面MBC的一个法向量n=(1,-1,1).设直线AD与平面MBC所成角为θ,则sinθ=
5、cos〈n,〉
6、==,即直线AD与平面MBC所成角的正弦值为.2.解:(1)证明:如图,取BD中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD均为正三角形,因此AO⊥BD,OC⊥BD.因为AO,
7、OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N分别为线段AD,AB的中点,所以NH∥AO,MN∥BD.因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO中点,故P为BC中点.(2)法一:由俯视图及(1)可知,AO⊥平面BCD.因为OC,OB⊂平面BCD,所以AO⊥OC,AO⊥OB.又OC⊥OB,所以直线
8、OA,OB,OC两两垂直.如图,以O为坐标原点,以,,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz.则A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0).因为M,N分别为线段AD,AB的中点,又由(1)知,P为线段BC的中点,所以M,N,P.于是=(1,0,-),=(-1,,0),=(1,0,0),=.设平面ABC的一个法向量n1=(x1,y1,z1),则即有从而取z1=1,则x1=,y1=1,所以n1=(,1,1).连接MP,设平面MNP的一个法向量n2=(x2,y2,z2),则即有从而取z2=1,所以n2=(0,1,1).设二面角ANPM的大小为θ.则
9、cosθ===.故二面角ANPM的余弦值是.法二:如图,作NQ⊥AC于Q,连接MQ.由(1)知,NP∥AC,所以NQ⊥NP.因为MN⊥NP,所以∠MNQ为二面角ANPM的一个平面角.由(1)知,△ABD,△BCD为边长为2的正三角形,所以AO=OC=.由俯视图可知,AO⊥平面BCD.因为OC⊂平面BCD,所以AO⊥OC,因此在等腰Rt△AOC中,AC=,作BR⊥AC于R.在△ABC中,AB=BC,所以BR==.因为在平面