2019-2020年高二数学下学期期末考试 理(含解析)新人教A版

2019-2020年高二数学下学期期末考试 理(含解析)新人教A版

ID:45446218

大小:63.50 KB

页数:8页

时间:2019-11-13

2019-2020年高二数学下学期期末考试 理(含解析)新人教A版_第1页
2019-2020年高二数学下学期期末考试 理(含解析)新人教A版_第2页
2019-2020年高二数学下学期期末考试 理(含解析)新人教A版_第3页
2019-2020年高二数学下学期期末考试 理(含解析)新人教A版_第4页
2019-2020年高二数学下学期期末考试 理(含解析)新人教A版_第5页
资源描述:

《2019-2020年高二数学下学期期末考试 理(含解析)新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高二数学下学期期末考试理(含解析)新人教A版注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题(题型注释)1.复数等于()A.B.C.D.【答案】C【解析】试题分析:.考点:复数的四则运算法则.2.如果复数是纯虚数,则的值为()A.B.C.D.【答案】B【解析】试题分析:由于,因为复数为纯虚数,,即.考点:复数的概念和复数的模.3.已知函数,则它的导函数是()A.B.C.D.【答案】B【解析】试题分析:,考点:复合函数的导数.

2、4.()A.B.C.D.【答案】A【解析】试题分析:考点:微积分基本定理的应用.5.如图,平行四边形ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A.3对B.4对C.5对D.6对【答案】D【解析】试题分析:由于,与相似;与相似;由于,所以与相似,与相似,与相似,由相似三角形的传递性当与相似.考点:相似三角形.6.曲线经过伸缩变换T得到曲线,那么直线经过伸缩变换T得到的直线方程为()A.B.C.D.【答案】C【解析】试题分析:由题意得直线经过伸缩变换得到的直线方程为,整理得考点:图象的伸缩变换.

3、7.圆的圆心坐标是()A.B.C.D.【答案】A【解析】试题分析:方程两边同时乘以得,即,圆心坐标为,因此,,因此极坐标,与之等价的是考点:极坐标的应用.8.在极坐标系中与圆相切的一条直线的方程为()A.B.C.D.【答案】A【解析】试题分析:由题意知,化简得,,其中一条切线方程为,极坐标方程考点:极坐标方程与直角坐标方程的转化.9.设随即变量服从正态分布,,则等于()A.B.C.D.【答案】D【解析】试题分析:正态曲线关于直线对称,,因此.考点:正态分布下的概率.10.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序只能出现在第

4、一步或最后一步,程序实施时必须相邻,请问实验顺序的编排方法共有()A.种B.种C.种D.种【答案】B【解析】试题分析:先安排程序,从第一步或最后一步选一个,有种,把看成一个整体和其余三个程序编排,最后换位置,共有种.考点:排列的应用11.某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是则在这段时间内吊灯能照明的概率是()A.B.C.D.【答案】C【解析】试题分析:这段时间内吊灯不能照明的概率,因此这段时间内吊灯能照明的概率考点:独立事件的概率.12.已知是定义在上的非负可导函数,且满足,对任意正数,若,则必有()A.B

5、.C.D.【答案】A【解析】试题分析:设,则,因此函数在区间上是减函数,,已知是定义在上的非负可导函数,且满足因此所以是减函数,,当等号成立.考点:函数的单调性与导数第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)13.函数的最大值是.【答案】5【解析】试题分析:由于,可设,则,因此最大值为5考点:辅助角公式的应用.14.由曲线,,所围成的图形面积为.【答案】【解析】试题分析:直线与曲线的交点为;直线与曲线的交点,因此面积为考点:定积分的应用.15.二项式的展开式中含的项的系数是.【答案】【解析】试题分析:由

6、于,因此的系数为考点:二项展开式的通项公式.16.已知函数表示过原点的曲线,且在处的切线的倾斜角均为,有以下命题:①的解析式为;②的极值点有且只有一个;③的最大值与最小值之和等于零;其中正确命题的序号为_.【答案】①③【解析】试题分析:由于函数过原点因此,由于在处的切线的倾斜角均为,,,,解得所以,,得,极值点有2个,由于是奇函数,因此最大值和最小值之和为零.考点:函数的导数与切线方程.评卷人得分三、解答题(题型注释)17.设函数.(1)当时,解关于的不等式;(2)如果,,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)理解绝对

7、值的几何意义,表示的是数轴的上点到原点的距离;(2)对分类讨论,分三部分进行讨论;(3)掌握一般不等式的解法:,.(4)对于恒成立的问题,常用到以下两个结论:(1),(2).试题解析:解:(1)当时,原不等式可变为,可得其解集为4分(2)因对任意都成立.∴对任何都成立.∵解集为.∴8分考点:(1)含绝对值不等式的解法;(2)恒成立的问题.18.设,其中为正整数.(1)求,,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.【答案】(1);(2)【解析】试题分析:(1)数学归纳法是一种重要的数学思想方法,主要用于解决与正整

8、数有关的数学问题;(2)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值是多少;(3)由时等式成立,推出时等式成立,一要找出等式两边的变

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。