欢迎来到天天文库
浏览记录
ID:45254407
大小:367.30 KB
页数:4页
时间:2019-11-11
《2019-2020年高三4月月考理科数学含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高三4月月考理科数学含答案注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟.2.请用0.5mm黑色签字笔将答案直接写在答题纸上.第Ⅰ卷(选择题共60分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则()A.B.C.D.2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知,那么=()A. B. C. D.4.在等差数列中,已知,则=()A.10B.18C.20D.285.执行如图所示的程序框图,若输入的的值为,则
2、输出的的值为()A.3B.126C.127D.1286.某钢厂的年产量由1990年的40万吨增加到xx年的50万吨,如果按照这样的年增长率计算,则该钢厂xx年的年产量约为()A.60万吨B.61万吨C.63万吨D.64万吨7.过抛物线焦点的直线交其于,两点,为坐标原点.若,则的面积为()A.B.C.D.28.下列说法正确的是()A.“为真”是“为真”的充分不必要条件;B.已知随机变量,且,则;DBCAC.若,则不等式成立的概率是;9.已知球O的面上四点A、B、C、D,则球O的体积等于()A.B.C.D.10.若函数的导函数在区间上的图像关于直线对称,则函数在区间上的图象可能是()
3、A.①④B.②④C.②③D.③④第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题5分,共25分)11.不等式的解集为.12.已知变量满足约束条件,则的最大值是.13.在直角三角形中,,,,若,则.14.从中任取四个数字组成无重复数字的四位数,其中偶数的个数是_______.(用数字作答)15.设是定义在上的奇函数,且.当时,有恒成立,则不等式的解集为___________.三、解答题(本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤)16.(本小题满分l2分)已知向量,,函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)在中,内角的对边分别为,已知,,,求的面积
4、.17.(本小题满分12分)在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面.(Ⅰ)求证:;(Ⅱ)若二面角为,求的长.18.(本小题满分12分)中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜).进入总决赛的甲乙两队中,若每一场比赛甲队获胜的概率为,乙队获胜的概率为,假设每场比赛的结果互相独立.现已赛完两场,乙队以暂时领先.(Ⅰ)求甲队获得这次比赛胜利的概率;(Ⅱ)设比赛结束时两队比赛的场数为随机变量,求随机变量的分布列和数学期望.19.(本小题满分12分)若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.(Ⅰ
5、)证明:数列是“平方递推数列”,且数列为等比数列;(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求;(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的的最小值.20.(本小题满分l3分)已知椭圆:()的焦距为,且过点(,),右焦点为.设,是上的两个动点,线段的中点的横坐标为,线段的中垂线交椭圆于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围.21.(本小题满分14分)已知函数.(Ⅰ)设是函数的极值点,求的值并讨论的单调性;(Ⅱ)当时,证明:>.xx高三4月份质量检测考试理科数学答案xx.4.4一、选择题:本大题共10小题,每小题5分,共50分.1—5BDBCC6—10CCBC
6、D二、填空题:本大题共5小题,每小题5分,共25分.11.12.13.14.6015.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)解:(Ⅰ).…………3分令(,得(,所以,函数的单调递增区间为.…………6分(Ⅱ)由,得,因为为的内角,由题意知,所以,因此,解得,…………………………8分又,,由正弦定理,得,………………10分由,,可得,…………………11分所以,的面积=.…12分17.(本小题满分12分)(Ⅰ)证明:在中,所以,由勾股定理知所以.……2分又因为⊥平面,平面所以.………………………4分又因为所以⊥平面,又平
7、面所以.………………………6分(Ⅱ)解:因为⊥平面,又由(Ⅰ)知,以为原点,建立如图所示的空间直角坐标系.设,则,,,,,.…………………………8分设平面的法向量为,则所以令.所以.……………………………9分又平面的法向量……………………………10分所以,解得.……………………11分所以的长为.……………………………………12分18.(本小题满分12分)解:(Ⅰ)设“甲队获胜”为事件,则甲队获胜包括甲队以获胜和甲队以获胜两种情况.设“甲队以获胜”为事件,则.……………………2分设
此文档下载收益归作者所有