欢迎来到天天文库
浏览记录
ID:45061290
大小:39.50 KB
页数:10页
时间:2019-11-08
《2019-2020年高一数学上学期9月质检试卷(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高一数学上学期9月质检试卷(含解析)一、填空题(共12小题,每小题3分,满分36分)1.若全集U={1,2,3,4,5,6},P={1,2,5},Q={2,3,4,5},则∁U(P∪Q)的所有元素的和为.2.已知集合A={y
2、y=x2},B={y
3、y=﹣2x2+3},则A∩B=.3.x≠1或y≠2是x+y≠3的条件.4.已知=,则2A+3B=.5.已知:直线l:(2+m)x+(1﹣2m)y+4﹣3m=0,不论m为何实数,直线l恒过一定点M,则点M的坐标.6.满足条件{1,2}⊊A⊆{1,2,3,4}的集合A有个.7.命题“若x2﹣3x+2>0
4、,则x≠1且x≠2”的逆否命题是若x=1或x=2则.8.将图中阴影部分可用交、并、补运算表示为.9.某个命题与自然数n有关,如果当n=k(k∈N)时该命题成立,那么可推得当n=k+1时该命题也成立.那么当n=时,该命题不成立,可推n=5时该命题也不成立.10.下面有四个说法:(1)a<1且b<1⇒a+b<2且ab<1;(2)a<1且b<1⇒ab﹣a﹣b+1<0且ab<1;(3)a>
5、b
6、⇒a2>b2;(4)x>1⇒≤1其中正确的是.11.一元二次方程kx2+3kx+k﹣3=0有一个正根和一个负根,则实数k的取值范围为.12.已知关于x的一元二次不等式ax2+bx
7、+c>0的解集为(﹣2,3),则关于x的不等式cx+b+a<0的解集为.二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个是正确的.必须用2B铅笔将正确结论的代号涂黑,选对得3分,不选、选错或者选出的代号超过一个,一律得零分.13.下列各式中正确的个数是()①0∈{0};②0∈∅;③∅⊊{0}④∅={0}.A.1个B.2个C.3个D.4个14.不等式(a﹣2)x2+2(a﹣2)x﹣4<0对x∈R恒成立,则实数a的取值范围是()A.(﹣∞,2)B.[﹣2,2]C.(﹣2,2]D.(﹣∞,﹣2)15.若a、b、c
8、∈R,a>b,则下列不等式成立的是()A.B.a2>b2C.D.a
9、c
10、>b
11、c
12、16.若数集A={x
13、2a+1≤x≤3a﹣5},B={x
14、3≤x≤22},则能使A⊆B成立的所有a的集合是()A.{a
15、1≤a≤9}B.{a
16、6≤a≤9}C.{a
17、a≤9}D.∅三、解答题(共5小题,满分52分)17.已知集合M={2,3,m2+4m+2},P={0,7,m2+4m﹣2,2﹣m},若M∩P={3,7},求实数m的值和集合P∪M.18.已知命题p:2≤x<4,命题q:3m﹣1≤x≤﹣m,且p是q的充分条件,求实数m的取值范围.19.当k取什么值时,一元二次不等式对一切
18、实数x都成立?20.已知集合A={x
19、﹣2<x<﹣1或x>),B={x
20、x2+ax+b≤0)且A∪B={x
21、x+2>0},A∩B={x
22、<x≤3},求a,b的值.21.已知函数f(x)=ax﹣bx2(1)当b>0时,若对任意x∈R都有f(x)≤1求证a≤2.(2)当b>1时,求证;对任意x∈[0,1],
23、f(x)
24、≤1的充要条件是b﹣1≤a≤2.上海市金山中学xx学年高一上学期9月质检数学试卷一、填空题(共12小题,每小题3分,满分36分)1.若全集U={1,2,3,4,5,6},P={1,2,5},Q={2,3,4,5},则∁U(P∪Q)的所有元素的和为6.考
25、点:交、并、补集的混合运算.专题:集合.分析:进而结合集合交集,并集,补集的定义,可得答案.解答:解:∵P={1,2,5},Q={2,3,4,5},∴P∪Q={1,2,3,4,5},又∵全集U={1,2,3,4,5,6},∴∁U(P∪Q)={6},故∁U(P∪Q)的所有元素的和为6,故答案为:6点评:本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.2.已知集合A={y
26、y=x2},B={y
27、y=﹣2x2+3},则A∩B=[0,3].考点:交集及其运算.专题:集合.分析:求出A与B中y的范围,分别确定出A与B,找出两集合的交集即可.解答:解
28、:由A中y=x2≥0,得到A=[0,+∞);由B中y=﹣2x2+3≤3,得到B=(﹣∞,3],则A∩B=[0,3].故答案为:[0,3]点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.x≠1或y≠2是x+y≠3的必要非充分条件.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:根据逆否命题的等价性,只需要判断x+y=3与x=1且y=2的条件关系即可.若x=0,y=3时,满足x+y=3,但此时x=1且y=2,不成立,即充分性不成立.若x=1,y=2时,则
29、x+y=3成立,即必要性
此文档下载收益归作者所有