高考数学一轮复习第5章数列第2讲等差数列及其前n项和知能训练轻松闯关文

高考数学一轮复习第5章数列第2讲等差数列及其前n项和知能训练轻松闯关文

ID:44897716

大小:107.61 KB

页数:4页

时间:2019-11-01

高考数学一轮复习第5章数列第2讲等差数列及其前n项和知能训练轻松闯关文_第1页
高考数学一轮复习第5章数列第2讲等差数列及其前n项和知能训练轻松闯关文_第2页
高考数学一轮复习第5章数列第2讲等差数列及其前n项和知能训练轻松闯关文_第3页
高考数学一轮复习第5章数列第2讲等差数列及其前n项和知能训练轻松闯关文_第4页
资源描述:

《高考数学一轮复习第5章数列第2讲等差数列及其前n项和知能训练轻松闯关文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2讲等差数列及其前n项和1.若等差数列{an}的前n项和为Sn,且S3=6,a1=4,则公差d等于(  )A.1           B.-1C.-2D.3解析:选C.由题意可得S3=3a1+3d=12+3d=6,解得d=-2,故选C.2.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为(  )A.24B.39C.104D.52解析:选D.因为{an}是等差数列,所以3(a3+a5)+2(a7+a10+a13)=6a4+6a10=48,所以a4+a10=8,其前13项的和为===52,故选

2、D.3.(2016·新余质检)在等差数列{an}中,a9=a12+6,则数列{an}的前11项和S11=(  )A.24B.48C.66D.132解析:选D.数列{an}是等差数列,故a6+3d=(a6+6d)+6,所以a6=12.又S11==11a6,所以S11=132.4.(2016·淮北、淮南模拟)如果等差数列{an}中,a1=-11,-=2,则S11=(  )A.-11B.10C.11D.-10解析:选A.由Sn=na1+d,得=a1+d,由-=2,得a1+d-=2,解得d=2,=a1+d=-11+5×2=-1,所以S11=-11.5.(2

3、016·江西省白鹭洲中学高三模拟)等差数列{an}中<-1,它的前n项和Sn有最大值,则当Sn取得最小正值时,n=(  )A.17B.18C.19D.20解析:选A.由题意知,a1>0,d<0,因为<-1,所以a10<-a9<0,即2a1<-17d.所以S18==<0,S17===(a1+8d)×17>0.故选A.6.已知Sn是等差数列{an}的前n项和,S10>0并且S11=0,若Sn≤Sk对n∈N*恒成立,则正整数k构成的集合为(  )A.{5}B.{6}C.{5,6}D.{7}解析:选C.在等差数列{an}中,由S10>0,S11=0,得S1

4、0=>0⇒a1+a10>0⇒a5+a6>0,S11==0⇒a1+a11=2a6=0,故可知等差数列{an}是递减数列且a6=0,所以S5=S6≥Sn,其中n∈N*,所以k=5或6.7.(2016·淮北质检)设Sn为等差数列{an}的前n项和,S2=S6,a4=1,则a5=__________.解析:由题意知解得所以a5=a4+d=1+(-2)=-1.答案:-18.(2016·驻马店调研)若数列{an}满足a1=15,且3an+1=3an-4,则an=________.解析:由3an+1=3an-4,得an+1-an=-,所以{an}是等差数列,首项

5、a1=15,公差d=-,所以an=15-(n-1)=.答案:9.(2016·东北三校联考)已知正项数列{an}满足a1=2,a2=1,且+=2,则a12=________.解析:因为+=2,所以+=,所以为等差数列,且首项为=,公差为-=,所以=+(n-1)×=,所以an=,所以a12=.答案:10.已知数列{an}是首项为a,公差为1的等差数列,bn=,若对任意的n∈N*,都有bn≥b8成立,则实数a的取值范围为________. 解析:依题意得bn=1+,对任意的n∈N*,都有bn≥b8,即数列{bn}的最小项是第8项,于是有≥.又数列{an}

6、是公差为1的等差数列,因此有即由此解得-8<a<-7,即实数a的取值范围是(-8,-7). 答案:(-8,-7)11.(2016·无锡质检)已知数列{an}的前n项和Sn是n的二次函数,且a1=-2,a2=2,S3=6.(1)求Sn;(2)证明:数列{an}是等差数列.解:(1)设Sn=An2+Bn+C(A≠0),则解得A=2,B=-4,C=0,故Sn=2n2-4n.(2)证明:当n=1时,a1=S1=-2;当n≥2时,an=Sn-Sn-1=2n2-4n-[2(n-1)2-4(n-1)]=4n-6,a1=-2也满足.故an=4n-6(n∈N*).因

7、为an+1-an=4,所以数列{an}成等差数列.1.已知数列{an}是等差数列,且<0,它的前n项和Sn有最小值,则Sn取到最小正数时n的值为________. 解析:由<0得a6(a7+a6)<0,又数列{an}的前n项和Sn有最小值,所以公差d>0,则a6<0,a7>0,a7+a6>0,所以S11=11a6<0,S12=6(a7+a6)>0,即Sn取到最小正数时n的值为12.答案:122.(2016·宿州模拟)已知函数f(x)=x2-2(n+1)x+n2+5n-7(n∈N*).(1)设函数y=f(x)的图像的顶点的纵坐标构成数列{an},求证

8、:{an}为等差数列;(2)设函数y=f(x)的图像的顶点到x轴的距离构成数列{bn},求{bn}的前n项和Sn.解:(1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。