2019_2020学年高中数学课时分层作业10函数的最大(小)值(含解析)新人教A版必修1

2019_2020学年高中数学课时分层作业10函数的最大(小)值(含解析)新人教A版必修1

ID:44866542

大小:62.71 KB

页数:5页

时间:2019-10-31

2019_2020学年高中数学课时分层作业10函数的最大(小)值(含解析)新人教A版必修1_第1页
2019_2020学年高中数学课时分层作业10函数的最大(小)值(含解析)新人教A版必修1_第2页
2019_2020学年高中数学课时分层作业10函数的最大(小)值(含解析)新人教A版必修1_第3页
2019_2020学年高中数学课时分层作业10函数的最大(小)值(含解析)新人教A版必修1_第4页
2019_2020学年高中数学课时分层作业10函数的最大(小)值(含解析)新人教A版必修1_第5页
资源描述:

《2019_2020学年高中数学课时分层作业10函数的最大(小)值(含解析)新人教A版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时分层作业(十) 函数的最大(小)值(建议用时:60分钟)[合格基础练]一、选择题1.函数y=在[2,3]上的最小值为(  )A.2      B.C.D.-B [∵函数y=在[2,3]上单调递减,∴当x=3时,ymin==.]2.函数f(x)=-x2+4x-6,x∈[0,5]的值域为(  )A.[-6,-2]   B.[-11,-2]C.[-11,-6]D.[-11,-1]B [函数f(x)=-x2+4x-6=-(x-2)2-2,x∈[0,5],所以当x=2时,f(x)取得最大值为-(2-2)2-2=-2;当x

2、=5时,f(x)取得最小值为-(5-2)2-2=-11,所以函数f(x)的值域是[-11,-2].故选B.]3.函数f(x)=则f(x)的最大值、最小值分别为(  )A.10,6B.10,8C.8,6D.以上都不对A [当1≤x≤2时,8≤2x+6≤10,当-1≤x<1时,6≤x+7<8,∴f(x)min=f(-1)=6,f(x)max=f(2)=10.故选A.]4.当0≤x≤2时,a<-x2+2x恒成立,则实数a的取值范围是(  )A.(-∞,1]B.(-∞,0]C.(-∞,0)D.(0,+∞)C [令f(x)=

3、-x2+2x,则f(x)=-x2+2x=-(x-1)2+1.又∵x∈[0,2],∴f(x)min=f(0)=f(2)=0,∴a<0.]5.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x(其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为(  )A.90万元B.60万元C.120万元D.120.25万元C [设公司在甲地销售x辆,则在乙地销售(15-x)辆,公司获利为L=-x2+21x+2(15-x)=-x2+19x+30=-+30+,∴当x=9或1

4、0时,L最大为120万元.]二、填空题6.函数f(x)=在[1,b](b>1)上的最小值是,则b=________.4 [因为f(x)=在[1,b]上是减函数,所以f(x)在[1,b]上的最小值为f(b)==,所以b=4.]7.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为________.1 [函数f(x)=-x2+4x+a=-(x-2)2+4+a,x∈[0,1],且函数有最小值-2.故当x=0时,函数有最小值,当x=1时,函数有最大值.∵当x=0时,f(0)=a

5、=-2,∴f(x)max=f(1)=-1+4-2=1.]8.函数f(x)=-3x在区间[2,4]上的最大值为________.-4 [∵在区间上是减函数,-3x在区间上是减函数,∴函数f(x)=-3x在区间上是减函数,∴f(x)max=f(2)=-3×2=-4.]三、解答题9.画出函数f(x)=的图象,并写出函数的单调区间,函数的最小值.[解] 函数的图象如图所示.由图象可知f(x)的单调递增区间为(-∞,0)和[0,+∞),无递减区间.由函数图象可知,函数的最小值为f(0)=-1.10.已知函数f(x)=-x2+

6、2x-3.(1)求f(x)在区间[2a-1,2]上的最小值g(a);(2)求g(a)的最大值.[解] (1)f(x)=-(x-1)2-2,f(2)=-3,f(0)=-3,∴当2a-1≤0,即a≤时,f(x)min=f(2a-1)=-4a2+8a-6;当0<2a-1<2,即

7、A.B.-C.-2D.2A [∵f(x)=-x+在上单调递减,∴f(x)max=f(-2)=2-=.]2.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是(  )A.[1,+∞)   B.[0,2]C.(-∞,2]D.[1,2]D [f(x)=(x-1)2+2,∵f(x)min=2,f(x)max=3,且f(1)=2,f(0)=f(2)=3,∴1≤m≤2,故选D.]3.函数g(x)=2x-的值域为________. [设=t(t≥0),则x+1=t2,即x=t2-1,∴y=2t2

8、-t-2=2-,t≥0,∴当t=时,ymin=-,∴函数g(x)的值域为.]4.用min{a,b}表示a,b两个数中的最小值.设f(x)=min{x+2,10-x}(x≥0),则f(x)的最大值为________.6 [在同一个平面直角坐标系内画出函数y=x+2和y=10-x的图象.根据min{x+2,10-x}(x≥0)的含义可知,f(x)的图象应为图中的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。