欢迎来到天天文库
浏览记录
ID:44808654
大小:251.78 KB
页数:8页
时间:2019-10-29
《2019_2020学年高中数学课时分层作业22线性规划的实际应用(含解析)新人教A版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时分层作业(二十二) 线性规划的实际应用(建议用时:60分钟)[基础达标练]一、选择题1.某厂生产甲产品每千克需用原料A和原料B分别为a1千克、a2千克,生产乙产品每千克需用原料A和原料B分别为b1千克、b2千克,甲,乙产品每千克可获利润分别为d1元、d2元,月初一次性购进原料A,B各c1千克、c2千克,本月生产甲产品和乙产品各多少千克时才能使月利润总额达到最大?在这个问题中,设本月生产甲、乙两种产品分别为x千克、y千克,月利润总额为z元,那么,使总利润z=d1x+d2y最大的数学模型中,约束条件为
2、( )A. B.C.D.[答案] C2.某服装制造商有10m2的棉布料,10m2的羊毛料和6m2的丝绸料,做一条裤子需要1m2的棉布料,2m2的羊毛料和1m2的丝绸料,做一条裙子需要1m2的棉布料,1m2的羊毛料和1m2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x条,裙子y条,利润为z,则生产这两种服装所满足的数学关系式与目标函数分别为( )A.z=20x+40yB.z=20x+40yC.z=20x+40yD.z=40x+20yA [由题意知A
3、正确.]3.某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲乙原料限额A(吨)3212B(吨)128A.12万元B.16万元C.17万元D.18万元D [根据题意,设每天生产甲x吨,乙y吨,则目标函数为z=3x+4y,作出不等式组表示的平面区域,如图中阴影部分所示,作出直线3x+4y=0并平移,易知当直线经过点A(2,3)时,z取得最大值且zmax=3×2+
4、4×3=18,故该企业每天可获得最大利润为18万元.]4.某学校用800元购买A,B两种教学用品,A种用品每件100元,B种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A,B两种用品应各买的件数为( )A.2,4B.3,3C.4,2D.不确定B [设买A种用品x件,B种用品y件,剩下的钱为z元,则求z=800-100x-160y取得最小值时的整数解(x,y),用图解法求得整数解为(3,3).]5.某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙
5、型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为( )A.4650元B.4700元C.4900元D.5000元C [设派用甲型卡车x(辆),乙型卡车y(辆),获得的利润为u(元),u=450x+350y,由题意,x,y满足关系式作出相应的平面区域(略),u=450x+350y=50(9x+7y)在由确定的交点
6、(7,5)处取得最大值4900元.]二、填空题6.若点P(m,n)在由不等式组所确定的区域内,则n-m的最大值为________.3 [作出可行域,如图中的阴影部分所示,可行域的顶点坐标分别为A(1,3),B(2,5),C(3,4),设目标函数为z=y-x,则y=x+z,其纵截距为z,由图易知点P的坐标为(2,5)时,n-m的最大值为3.]7.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表每亩年产量每亩年种植成本每吨售价黄瓜4吨1.2
7、万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为________.30;20 [设黄瓜、韭菜的种植面积分别为x亩,y亩,则总利润z=4×0.55x+6×0.3y-1.2x-0.9y=x+0.9y.此时x,y满足条件画出可行域如图,得最优解为A(30,20).]8.甲、乙两工厂根据赛事组委会要求为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件;制作一等奖、二等奖所用原料完全相同.但工艺不同,
8、故价格有所差异.甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费较贵,它们的具体收费如下表所示,则组委会定做该工艺品的费用总和最低为________元.4900 [设甲厂生产一等奖奖品x件,二等奖奖品y件,x,y∈N,则乙生产一等奖奖品(3-x)件,二等奖奖品(6-y)件,则x,y满足设费用为z元,则z=500x+400y+800(3-x)+600(6-y)=-300x-200y+6000,作出不等式组对应的平面区域,如图阴影部分(包
此文档下载收益归作者所有