欢迎来到天天文库
浏览记录
ID:44512799
大小:182.00 KB
页数:4页
时间:2019-10-22
《11.1平方根与立方根-2.立方根 教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、11.1平方根与立方根2.立方根一、教学目标1、知识与技能目标(1)使学生理解立方根的概念,能运用根号正确表示一个数的立方根;(2)掌握用开立方运算求某些数的立方根的方法.2、过程与方法目标(1)通过对比体会平方根、立方根的联系和区别;(2)在学习开立方运算求一个数立方根的过程中,体会开立方运算与立方运算之间的互逆关系.3、情感与态度目标(1)发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确地处理.[来源:学科网ZXXK](2)通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情.二、教学重点和难点1.重点:立方根的
2、概念;求某数的立方根的方法.2.难点:平方根、立方根的概念及区别;求一个数的立方根.三、学法设计在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式.在学习的过程中让学生仔细观察、大胆猜测、交流讨论、分析推理,最后归纳总结.让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.四、教法设计针对八年级学生的知识结构和心理特征,本节课可选择用类比及引导探索法,由浅入深,由特殊到一般地提出问题,注重启发、疏导学生自主探索,合作交流.在探究活动中,引导学生利用概念思考问题,对于学生的回答给予点拨,及时评价
3、.这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性.五、教学过程设计(一)创设情境、复旧导新1、填表:定 义表示方法性 质分别与平方根的联系平方根若,则叫做的平方根.[来源:学#科#网Z#X#X#K]①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根.平方根包含算术平方根,算术平方根是平方根中的一个;平方根、算术平方根都只有非负数才有;0的平方根、算术平方根均为0.算术平方[来源:学.科.网]根非负数a的非负平方根.叫做a的算术平方根.①正数有一个算数平方根;②0的算术平方根是0;[来源
4、:学_科_网]③负数没有算术平方根;④.[来源:学科网]立方根2、思考:若一个正方体的体积是,那么这个正方体的棱长为多少呢?为使学生能更轻松地发现、掌握立方根,先激活学生记忆中有关平方根的知识,在这里设计了让学生回顾平方根的知识,以填空的形式简要归纳,为立方根的引入奠定基础.3、做一做(多媒体展示图片及问题):要制作一种容积为27m3的正方体形状包装箱,这种包装箱的棱长应该是多少?用多媒体展示图片和课件让学生动手做一做.在做的过程中引导学生思考,利用体积等于棱长的立方,将此题转化为求一个数使它的立方等于27,得出边长为3m.这样从现实生活中提出
5、数学问题,把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,使学生积极主动地投入到数学活动中去,同时为学习立方根提供背景和生活素材.4、试一试:你能试着给数的立方根下个定义吗?(学生分组讨论,相互交流,再总结定义,最后由教师补充)一般地,如果一个数a的立方等于a,那么这个数叫做a的立方根或三次方根.即:如果x3=a,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.(强调开立方与立方是逆运算)让学生试着给出立方根和开立方的定义.在这里让学生以原有的知识和经验出发,引导学生通过类比、思考、探索、
6、交流来获取知识和学会学习,同时让学生经历数学知识的形成与应用过程,使他们更好地理解数学概念的形成,发展他们的数学能力.在本次活动中,教师要关注:学生对平方根的了解程度;学生能否正确地利用类比的方法说出立方根和开立方的概念;通过对概念的探究,能否理解立方与开立方是一种互逆的运算;学生在活动中的参与意识及发表个人见解的勇气.(二)启发诱导,探索新知1、探究:根据立方根的意义填空(多媒体展示,学生口答)(1)因为23=8,所以8的立方根是();(2)因为()3=0.125,所以0.125的立方根是();(3)因为()3=0,所以0的立方根是();(4)
7、因为()3=-8,所以-8的立方根是().学生在了解立方根的有关概念的基础上通过对问题的研究,进一步巩固立方根的概念,并能熟练地利用开立方与立方的互逆性,求一个数的立方根.2、说一说(学生分组讨论):观察练习题中正数、0和负数的立方根各有什么特点?并完成多媒体展示的表格:平方根立方根正数有两个且互为相反数00负数没有平方根以填空的方式让学生计算具体的正数、0和负数的立方根,寻找它们各自的特点,通过小组讨论合作交流,归纳得出立方根的性质.这样让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究的过程中发展思维能力,有效地改变学生原有的学习方
8、式.3、自主探究:如何表示一个数的立方根?一个数a的立方根可表示为,读作:三次根号a,其中a是被开方数,3是根指数.通过让学生自主探究立
此文档下载收益归作者所有