2010线性代数期末试题及参考答案

2010线性代数期末试题及参考答案

ID:43692908

大小:183.12 KB

页数:7页

时间:2019-10-12

2010线性代数期末试题及参考答案_第1页
2010线性代数期末试题及参考答案_第2页
2010线性代数期末试题及参考答案_第3页
2010线性代数期末试题及参考答案_第4页
2010线性代数期末试题及参考答案_第5页
资源描述:

《2010线性代数期末试题及参考答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、2010线性代数期末试题及参考答案二、单项选择题(每小题3分,共15分)1.下列矩阵中,(     )不是初等矩阵。(A)(B)(C)(D)2.设向量组线性无关,则下列向量组中线性无关的是()。(A)(B)(C)(D)3.设A为n阶方阵,且。则(   )(A)(B)(C)(D)4.设为矩阵,则有()。(A)若,则有无穷多解;(B)若,则有非零解,且基础解系含有个线性无关解向量;(C)若有阶子式不为零,则有唯一解;(D)若有阶子式不为零,则仅有零解。5.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则()(A)A与B相似(B),但

2、A-B

3、=0(C)A=B(D)A与B不一定相

4、似,但

5、A

6、=

7、B

8、三、填空题(每小题4分,共20分)1.。72.为3阶矩阵,且满足3,则=______,。3.向量组,,,是线性(填相关或无关)的,它的一个极大线性无关组是。4.已知是四元方程组的三个解,其中的秩=3,,,则方程组的通解为。5.设,且秩(A)=2,则a=       。四、计算下列各题(每小题9分,共45分)。1.已知A+B=AB,且,求矩阵B。2.设,而,求。3.已知方程组有无穷多解,求a以及方程组的通解。4.求一个正交变换将二次型化成标准型75.A,B为4阶方阵,AB+2B=0,矩阵B的秩为2且

9、E+A

10、=

11、2E-A

12、=0。(1)求矩阵A的特征值;(2)A是否可相似对

13、角化?为什么?;(3)求

14、A+3E

15、。五.证明题(每题5分,共10分)。1.若是对称矩阵,是反对称矩阵,是否为对称矩阵?证明你的结论。2.设为矩阵,且的秩为n,判断是否为正定阵?证明你的结论。二、1.选B。初等矩阵一定是可逆的。2.选B。A中的三个向量之和为零,显然A线性相关;B中的向量组与,,等价,其秩为3,B向量组线性无关;C、D中第三个向量为前两个向量的线性组合,C、D中的向量组线性相关。3.选C。由,)。4.选D。A错误,因为,不能保证;B错误,的基础解系含有个解向量;C错误,因为有可能,无解;D正确,因为。5.选A。A正确,因为它们可对角化,存在可逆矩阵,使得,因此都相似于同一个

16、对角矩阵。7三、1.(按第一列展开)2.;(=)3.相关(因为向量个数大于向量维数)。。因为,。4.。因为,原方程组的导出组的基础解系中只含有一个解向量,取为,由原方程组的通解可表为导出组的通解与其一个特解之和即得。5.(四、1.解法一:。将与组成一个矩阵,用初等行变换求。=。故。解法二:。,因此。72.解:,,。3.解法一:由方程组有无穷多解,得,因此其系数行列式。即或。当时,该方程组的增广矩阵于是,方程组有无穷多解。分别求出其导出组的一个基础解系,原方程组的一个特解,故时,方程组有无穷多解,其通解为,当时增广矩阵,,此时方程组无解。解法二:首先利用初等行变换将其增广矩阵化为阶梯形。7由

17、于该方程组有无穷多解,得。因此,即。求通解的方法与解法一相同。4.解:首先写出二次型的矩阵并求其特征值。二次型的矩阵,因此得到其特征值为,。再求特征值的特征向量。解方程组,得对应于特征值为的两个线性无关的特征向量,。解方程组得对应于特征值为的一个特征向量。再将,正交化为,。最后将,,单位化后组成的矩阵即为所求的正交变换矩阵,其标准形为7。5.解:(1)由知-1,2为的特征值。,故-2为的特征值,又的秩为2,即特征值-2有两个线性无关的特征向量,故的特征值为-1,2,-2,-2。(2)能相似对角化。因为对应于特征值-1,2各有一个特征向量,对应于特征值-2有两个线性无关的特征向量,所以有四个

18、线性无关的特征向量,故可相似对角化。(3)的特征值为2,5,1,1。故=10。五、1.为对称矩阵。证明:===,所以为对称矩阵。2.为正定矩阵。证明:由知为对称矩阵。对任意的维向量,由得,=,由定义知是正定矩阵。7

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。