欢迎来到天天文库
浏览记录
ID:43528077
大小:956.44 KB
页数:17页
时间:2019-10-09
《高考数学一轮复习考点32数列的综合问题必刷题理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点32数列的综合问题1.(北京市房山区2019年高考第一次模拟测试理)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为( )(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A.天B.天C.天D.天【答案】C【解析】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An,则An=.莞的长度组成等比数列{bn},其b1
2、=1,公比为2,其前n项和为Bn.则Bn,由题意可得:,整理得:2n+=7,解得2n=6,或2n=1(舍去).∴n=≈2.6.∴估计2.6日蒲、莞长度相等.故选:C.2.(新疆乌鲁木齐市2018届高三第三次诊断性测验)已知数列,满足,,,则数列的前10项的和为 A.B.C.D.【答案】D【解析】由an+1﹣an2,所以数列{an}是等差数列,且公差是2,{bn}是等比数列,且公比是2.又因为=1,所以an=+(n﹣1)d=2n﹣1.所以b2n﹣1=•22n﹣2=22n﹣2.设,所以=22n﹣2,所以4,所以数列{∁n}是等比数列,且公比为4,
3、首项为1.由等比数列的前n项和的公式得:其前10项的和为(410﹣1).故选:D.3.(安徽省“皖南八校”2018届高三第三次(4月)联考)删去正整数数列中的所有完全平方数,得到一个新数列,这个数列的第2018项是()A.B.C.D.【答案】B【解析】由题意可得,这些数可以写为:,第个平方数与第个平方数之间有个正整数,而数列共有项,去掉个平方数后,还剩余个数,所以去掉平方数后第项应在后的第个数,即是原来数列的第项,即为,故选B.4.(华大新高考联盟2018届高三上学期11月教学质量测评理)已知等比数列的前项和为,,则()A.2B.3C.4D.5
4、【答案】B【解析】由可得,所以,又因为,所以选B.5.(湖南省2017届高三高考冲刺预测卷六理)最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是()A.B.C.D.【答案】C【解析】由题意,可设扇形区域的面积分别为,则由几何概型得,消费元以上者抽中一等奖的概率,
5、故选C.6.(湖北省钟祥市2019届高三高考第一次模拟考试理)对于实数x,[x]表示不超过x的最大整数,已知正数列{an}满足Sn=(an),n∈N*,其中Sn为数列{an}的前n项的和,则[]=______.【答案】20【解析】由题可知,当时,化简可得,当所以数列是以首项和公差都是1的等差数列,即又时,记一方面另一方面所以即故答案为207.(北京市朝阳区2019届高三第一次(3月)综合练习一模)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(
6、如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.【答案】【解析】第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列,所以,an=9+(n-1)×9=9n,所以,a27=9×27=243,前27项和为:=3402.8.(江苏省南京师
7、大附中2018届高三高考考前模拟考试)在数列{an}中,若a4=1,a12=5,且任意连续三项的和都是15,则a2018=______.【答案】9【解析】分析:将an+an+1+an+2=15中n换为n+1,可得数列{an}是周期为3的数列.求出a2,a1,即可得到a2018详解:由题意可得an+an+1+an+2=15,将n换为an+1+an+2+an+3=15,可得an+3=an,可得数列{an是周期为3的数列.故,由an+an+1+an+2=15,n取1可得,故,故答案为9.9.(湖北省武昌2018届元月调研考试)对任一实数序列,定义新序
8、列,它的第项为,假设序列的所有项都是,且,则__________.【答案】100.【解析】设序列的首项为,则序列,则它的第n项为,因此序列A的第项,则
此文档下载收益归作者所有