资源描述:
《6.2 微定积基本定理2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2xsint例:设F(x)dt,求F(x).xt2sin(x)sinx1解:F(x)2x2xx2x222sin(x)sinx4sin(x)sinx.x2x2xxt例:设F(x)xedt,求F(x).0xxxtttx解:由于xedtxedt,故F(x)edtxe.000x22例:设F(x)(tx)costdt,求F(x).3xxx2222解:F(x)(tx)costdttcostdtxcostdt.333xx22故F(x)[tcostdt][xcostdt]33xx22xcosx[2xcostdtxco
2、sx]2xcostdt.3323xx例:设F(x)esintdt,求F(x).x2223x3x3xxxxx2解:F(x)esintdtesintdt,故F(x)esintdte[6xsin(3x)sinx].xxx2xx例:设F(x)(esint)tdt,求F(x).x3333xxxxx解:F(x)(esint)tdtetdttsintdtx2x2x23xxx32233222故F(x)etdte[x3xx2x][x(sinx)3xx(sinx)2x]x2xf(t)(xt)dt0例:求lim,f(x)在(,
3、)上连续.2x0xxxxx解:由于0f(t)(xt)dtx0f(t)dt0tf(t)dt,且lim0[0f(t)(xt)dt]0.x由洛必达法则知:xxxx0f(t)(xt)dtx0f(t)dt0tf(t)dt0f(t)dtxf(x)xf(x)limlimlim22x0xx0xx02xxf(t)dtf(x)f(0)0limlim.x02xx022x222tx(1t)edt0例:求lim.xxx222x2x22txx2t2t(1t)edte(1t)edt(1t)edt000解:由于.2xxxx
4、e当x时,不妨设x0,故x2xx22t2t(1t)edt1dtx,因此当x时,有(1t)edt;0002x另一方面,当x时,xe.由洛必达法则知:x22x22tx2t2(1t)edt(1t)edt(1x2)ex1x21lim0lim0limlim.2222xxxxexxexxex2xx12x2x2(arctant)dt0例:求lim.x21x解:当x时,不妨设x3,故x3xx22220(arctant)dt0(arctant)dt3(arctant)dt3
5、(arctant)dtxx222(arctan3)dt(arctan3)1dt(arctan3)(x3).33x22当x时,(arctan3)(x3),因此当x时,有(arctant)dt;02另一方面,当x时,1x.由洛必达法则知:x2(arctant)dt(arctanx)21x2(arctanx)2202limlimlim().x1x2x2xxx24221xx2txedt0例:求lim.2x0(sinx)arctanxx2x2ttxedtxedt00解:limlim2
6、2x0(sinx)arctanxx0xx2x21ex1limlim.22x03xx03x32xu[arctan(1t)dt]du00例:求lim.x0x(1cosx)22uxux解:令(u)0arctan(1t)dt,则0[0arctan(1t)dt]du0(u)du.由洛必达法则知:2xuxxx0[0arctan(1t)dt]du0(u)du0(u)du0(u)dulimlimlimlimx0x(1cosx)x0x(1cosx)x012x013xxx222x(x)arctan(1t)d
7、t2xarctan(1x2)0limlimlimx032x032x03xxx2222arctan(1x)2lim.x03346例:设f(x)在[a,b]上连续,在(a,b)可导,且f(x)0,证明:1xF(x)f(t)dt在(a,b)内满足:F(x)0.xaa1x解:(1):由于f(x)在[a,b]上连续,故F(x)f(t)dt在(a,b)上可导,xaax1x1f(x)f(t)dta且F(x)f(