2017年高考数学考点解读+命题热点突破专题01集合与常用逻辑用语文

2017年高考数学考点解读+命题热点突破专题01集合与常用逻辑用语文

ID:43305792

大小:215.11 KB

页数:17页

时间:2019-09-29

2017年高考数学考点解读+命题热点突破专题01集合与常用逻辑用语文_第1页
2017年高考数学考点解读+命题热点突破专题01集合与常用逻辑用语文_第2页
2017年高考数学考点解读+命题热点突破专题01集合与常用逻辑用语文_第3页
2017年高考数学考点解读+命题热点突破专题01集合与常用逻辑用语文_第4页
2017年高考数学考点解读+命题热点突破专题01集合与常用逻辑用语文_第5页
资源描述:

《2017年高考数学考点解读+命题热点突破专题01集合与常用逻辑用语文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、专题01集合与常用逻辑用语文【考向解读】集合与常用逻辑用语在高考中是以选择题或填空题的形式进行考查的,属于容易题.但命题真假的判断,这一点综合性较强,联系到更多的知识点,属于中挡题.预测2016年高考会以集合的运算和充要条件作为考查的重点.【命题热点突破一】集合的关系及运算集合是高考每年必考内容,题型基木都是选择题、填空题,题目难度人多数为最低档,有时候在填空题中以创新题型出现,难度稍高.在复习中,本部分应该重点掌握集合的表示、集合的性质、集合的运算及集合关系在常用逻辑用语、函数、不等式、三角函数、【解析】几何等方面的应用.同时注意研

2、究有关集合的创新问题,研究问题的切入点及集合知识在相关问题屮所起的作用.1.集合的运算性质及重耍结论(1)〃US=〃,JU0=J,A.(2)/fAz4=Xz4A0=0,A.(3)/Q([/)=0,力U([/)=/2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解;(2)若己知的集合是点集,用数形结合法求解;(3)若已知的集合是抽象集合,用Venn图求解.例1、【2016高考新课标3理数】设集合S={x

3、(x-2)(x-3)>0},T={x

4、x>0},则SAT=()(A)[2,3](B)(-00,2]U[3,+oo)(

5、C)[3,+.g)(D)(0,2]U[3,+oo)【答案】D【解析】由(兀一2)(兀一3)^0解得或兀52,所以S={x

6、x<2^x>3},所以SHT={x3},故选D.【感悟提升】(1)集合的关系及运算问题,要先对集合进行化简,然后可借助Verm图或数轴求解.(1)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.【变式探究】⑴已知集合A={xx~4x+3<0}f〃={则2〈*4},则加〃等于()A.(1,3)B.(1,4)C.(2,3)D.

7、(2,4)⑵设〃为全集,力,〃是集合,则“存在集合C使得AUC,是“Ad”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(3)已知集合〃=d

8、l()g2/W2},B=(—8,臼),若AUB,则实数臼的取值范围是(c,+8),其中c=【答案】(1)C(2)C(3)4【解析】(1)A—{x

9、x—4x4-3<0}—{x(x—1)(x_3)}—{x

10、1<3}f{jt

11、2

12、2

13、)可知,存在A=C?同时满足肚。眩也故“存在集合Q使得肚G眩(0是{iACB=^?的充要条件.(3)由log:xW2,得0

14、04,即尸4・―<>1—.04ax点评(1)弄清集合中所含元素的性质是集合运算的关键,这主要看代表元素,即“丨”前面的表述.(2)当集合之间的关系不易确定吋,可借助Venn图或列举实例.【命题热点突破二】四种命题与充要条件逻辑用语是高考常考内容,充分、必要条件是重点考查内容,题型基本都是选择题、填空题,题目难度以低、中档为主.在复习中,

15、本部分应该重点掌握四种命题的真假判断、否命题与命题的否定的区别、含有量词的命题的否定的求法、充分必要条件的判定与应用.这些知识被考查的概率都较高,特别是充分、必要条件儿乎每年都有考查.1.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.1.若戸Q,则p是Q的充分条件,Q是“的必要条件;若p^q,则p,q互为充要条件.例2、[2016高考天津理数】设{环是首项为正数的等比数列,公比为°则“冰0”是“对任意的正整数刀,$2心+0"〈0”的()(A)充要条件(B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件【

16、答案】C【解析】由题意得,4(/"J+g2"T)v0oq2(-i)(g+i)vou>gw(_*,_]),故是必要不充分条件,故选C.【感悟提升】充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若尸>G,则Q是Q的充分条件(或Q是p的必要条件);若戸q,且庐则卩是Q的充分不必要条件(或Q是P的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若昇匸〃,则昇是〃的充分条件(〃是昇的必要条件);若〃=必则力是〃的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.【变式探究】(1)设a,B是两个不同的平

17、面,刃是直线且刃uG.则“/〃〃〃”是“S〃〃”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】远禺胡0=>如/6但jtsca,所以効"0是的必要而不充分条件.(2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。