2019年高考数学考纲解读与热点专题01集合、常用逻辑用语热点难点突破理

2019年高考数学考纲解读与热点专题01集合、常用逻辑用语热点难点突破理

ID:35925927

大小:136.76 KB

页数:7页

时间:2019-04-25

2019年高考数学考纲解读与热点专题01集合、常用逻辑用语热点难点突破理_第1页
2019年高考数学考纲解读与热点专题01集合、常用逻辑用语热点难点突破理_第2页
2019年高考数学考纲解读与热点专题01集合、常用逻辑用语热点难点突破理_第3页
2019年高考数学考纲解读与热点专题01集合、常用逻辑用语热点难点突破理_第4页
2019年高考数学考纲解读与热点专题01集合、常用逻辑用语热点难点突破理_第5页
资源描述:

《2019年高考数学考纲解读与热点专题01集合、常用逻辑用语热点难点突破理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题01集合、常用逻辑用语1.已知A⊆B,A⊆C,B=,C=,则A可以是(  )A.B.C.D.【答案】C.【解析】由题A⊆C,A⊆B,∵B={1,2,3,5},C={0,2,4,8},∴A可以是{2}.2.设0

2、qB.p∧qC.綈p∧qD.p∨綈q【答案】D.【解析】在y=2-ax+1中令x+1=0,得x=-1,此时y=1,所以y=2-ax+1的图象恒过(-1,1),所以命题p为假,綈p为真.由y=f(x-1)为偶函数和f(x-1)=f(-x-1),即f(-1+x)=f(-x-1),所以f(x)的对称轴为x=-1,所以命题q为假,綈q为真,所以p∨綈q为真,故选D.4.已知集合A=,B=,若A∪B=A,则实数a的取值范围为(  )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)【答案】C.【解析】由题A==,∵

3、A∪B=A,∴∴-2≤a≤1,选C.5.命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是(  )A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0【答案】D.【解析】全称命题的否定是特称命题,故选D.6.已知p:∀m∈R,x2-mx-1=0有解,q:∃x0∈N,x02-x0-1≤0,则下列选项中是假命题的为(  )A.p∧qB.p∧(綈q)C.p∨qD.p∨(綈q)【答案】B.【解析

4、】对于命题p:方程x2-mx-1=0,则Δ=m2+4>0,因此:∀m∈R,x2-mx-1=0有解,可得:命题p是真命题.对于命题q:由x2-x-1≤0,解得≤x≤,因此存在x=0,1∈N,使得x2-x-1≤0成立,因此是真命题.∴选项中是假命题的为p∧(綈q),故选B.7.下列说法正确的是(  )A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am24x0成立D.“若sinα≠,则α≠”是真命题【答案】D8.命题p:∀a≥0,关于x的方程x

5、2+ax+1=0有实数解,则綈p为(  )A.∃a<0,关于x的方程x2+ax+1=0有实数解B.∃a<0,关于x的方程x2+ax+1=0没有实数解C.∃a≥0,关于x的方程x2+ax+1=0没有实数解D.∃a≥0,关于x的方程x2+ax+1=0有实数解【解析】根据全称命题的否定可知,綈p为∃a≥0,关于x的方程x2+ax+1=0没有实数解,选C.【答案】C9.已知全集U=R,A={x

6、x2-2x<0},B={x

7、x≥1},则A∪(∁UB)=(  )A.(0,+∞)B.(-∞,1)C.(-∞,2)D.(0,1)【解析】通解 因为A={

8、x

9、x2-2x<0}={x

10、0

11、x<1},所以A∪(∁UB)={x

12、x<2},故选C.【答案】C10.设a>0且a≠1,则“logab>1”是“b>a”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由logab>1得,当a>1时,b>a;当01推出b>a,也不能由b>a推出logab>1,故选D.【答案】D11.已知集合A={x

13、x

14、,B={x

15、x2-3x+2<0},若A∩B=B,则实数a的取值范围是(  )A.a<1B.

16、a≤1C.a>2D.a≥2【解析】集合B={x

17、x2-3x+2<0}={x

18、1b”是“2a>2b”的充要条件;q:∃x∈R,

19、x+1

20、≤x,则(  )A.綈p∧q为真命题B.p∨q为真命题C.p∧q为真命题D.p∧綈q为假命题【解析】由函数y=2x是R上的增函数,知命题p是真命题;对于命题q,当x+1≥0,即x≥-1时,

21、x+1

22、=x+1>x;当x+1<0,即x<-1时,

23、x+1

24、=-x-1,由-x-1≤x,得x≥-,无解,因此命题q是假命题.所以

25、綈p∨q为假命题,A错误;p∨q为真命题,B正确;p∧q为假命题,C错误;p∧綈q为真命题,D错误.选择B.【答案】B13.下列说法中正确的个数是(  )(1)若命题p:∃x0∈R,x-x0≤0,则綈p:∃x0∈R,x-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。