2020版高考数学高考必考题突破讲座1函数与导数的综合问题课时达标理(含解析)新人教A版

2020版高考数学高考必考题突破讲座1函数与导数的综合问题课时达标理(含解析)新人教A版

ID:43005207

大小:31.99 KB

页数:4页

时间:2019-09-25

2020版高考数学高考必考题突破讲座1函数与导数的综合问题课时达标理(含解析)新人教A版_第1页
2020版高考数学高考必考题突破讲座1函数与导数的综合问题课时达标理(含解析)新人教A版_第2页
2020版高考数学高考必考题突破讲座1函数与导数的综合问题课时达标理(含解析)新人教A版_第3页
2020版高考数学高考必考题突破讲座1函数与导数的综合问题课时达标理(含解析)新人教A版_第4页
资源描述:

《2020版高考数学高考必考题突破讲座1函数与导数的综合问题课时达标理(含解析)新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考必考题突破讲座(一)1.(2019·河北武邑中学月考)已知函数f(x)=2alnx-x2.(1)若a=2,求函数f(x)的图象在点(1,f(1))处的切线方程;(2)若a>0,判断函数f(x)在定义域上是否存在最大值或最小值,若存在,求出函数f(x)的最大值或最小值.解析(1)当a=2时,f(x)=4lnx-x2.f′(x)=-2x,f′(1)=2,f(1)=-1,所以函数f(x)的图象在点(1,f(1))处的切线方程为y+1=2(x-1),即2x-y-3=0.(2)f′(x)=-2x=,x>0.令f′(x)=0,由a>0,解得x1=,x2=-(舍去).当x在(0,+∞)上

2、变化时,f′(x),f(x)的变化情况如下表.x(0,)(,+∞)f′(x)+0-f(x)单调递增alna-a单调递减所以函数f(x)在区间(0,+∞)上有最大值f()=alna-a,无最小值.2.(2017·全国卷Ⅱ)设函数f(x)=(1-x2)ex.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.解析(1)f′(x)=(1-2x-x2)ex.令f′(x)=0,得x=-1-或x=-1+.当x∈(-∞,-1-)时,f′(x)<0;当x∈(-1-,-1+)时,f′(x)>0;当x∈(-1+,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-)

3、,(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增.(2)f(x)=(1+x)(1-x)ex.当a≥1时,设函数h(x)=(1-x)ex,h′(x)=-xex<0(x>0),因此h(x)在[0,+∞)上单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1.当00(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故ex≥x+1.当0(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=,则x0∈

4、(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=,则x0∈(0,1),f(x0)>(1-x0)(1+x0)2=1≥ax0+1.综上,a的取值范围是[1,+∞).3.已知函数f(x)=alnx(a>0),e为自然对数的底数.(1)若过点A(2,f(2))的切线斜率为2,求实数a的值;(2)当x>0时,求证:f(x)≥a;(3)若在区间(1,e)上e-ex<0恒成立,求实数a的取值范围.解析(1)由题意得f′(x)=,所以f′(2)==2,所以a=4.(2)证明:令g(x)=a(x>0),则g′(x)=a.令g′(x)>0,即a

5、>0,解得x>1;令g′(x)<0,解得0.令h(x)=,则h′(x)=.由(2)知,当x∈(1,e)时,lnx-1+>0,所以h′(x)>0,即h(x)在(1,e)上单调递增,所以h(x)

6、(x)的图像在x=1处有相同的切线,求a,b的值;(2)当b=3-a时,若对任意x0∈(1,+∞)和任意a∈(0,3),总存在不相等的正实数x1,x2,使得g(x1)=g(x2)=f(x0),求c的最小值.解析(1)由f(x)=lnx,得f(1)=0.又f′(x)=,所以f′(1)=1.当c=0时,g(x)=ax+,所以g′(x)=a-,所以g′(1)=a-b.因为函数f(x)与g(x)的图像在x=1处有相同的切线,所以即解得(2)当x0>1时,则f(x0)>0,又b=3-a,设t=f(x0),则题意可转化为方程ax+-c=t(t>0)在(0,+∞)上有相异两实根x1,x2,即

7、关于x的方程ax2-(c+t)x+(3-a)=0(t>0)在(0,+∞)上有相异两实根x1,x2.所以即所以c>2-t对t∈(0,+∞),a∈(0,3)恒成立.所以2≤2=3.又因为-t<0,所以2-t的取值范围是(-∞,3),所以c≥3.故c的最小值为3.5.已知函数f(x)=xlnx-ax2,g(x)为f(x)的导数.(1)讨论函数g(x)的零点个数;(2)若函数f(x)在定义域内不单调且在(2,+∞)上单调递减,求实数a的取值范围.解析(1)g(x)=f′(x)=lnx-2ax+1,令

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。