欢迎来到天天文库
浏览记录
ID:42994790
大小:749.50 KB
页数:24页
时间:2019-09-27
《离散型随机变量的方差ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、离散型随机变量的方差一、复习回顾1、离散型随机变量的数学期望2、数学期望的性质············数学期望是反映离散型随机变量的平均水平3、求期望的步骤:(1)列出相应的分布列(2)利用公式4、如果随机变量X服从两点分布为X10Pp1-p则5、如果随机变量X服从二项分布,即X~B(n,p),则探究:甲、乙两名射手在同一条件下进行射击,分布列如下:击中环数ξ15678910概率P0.030.090.200.310.270.10射手甲射手乙击中环数ξ256789概率P0.010.050.200.410.33用击中环数的平均数,比较两名射手的射击水平Eξ1=8Eξ2
2、=8由上知Eξ1=Eξ2,问题1:如果你是教练,你会派谁参加比赛呢?pX1456789100.10.20.3(甲)X2456789100.10.20.30.4p(乙)思考:除平均中靶环数外,还有其他刻画两名同学各自射击特点的指标吗?样本方差:(x1-EX)2·p1+(x2-EX)2·p2+…+(xn-EX)2·pnDX=类似随机变量X的方差:称为随机变量X的标准差。思考:怎样定量刻画随机变量的稳定性?思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什么?样本离散型随机变量均值公式意义方差或标准差公式意义随着不同样本值的变化而变化是一个常数随着不同样
3、本值的变化而变化,刻画样本数据集中于样本平均值程度是一个常数,反映随变量取值偏离均值的平均程度,DX,越小,偏离程度越小.Dξ1=Dξ2=由上知Eξ1=Eξ2,Dξ1>Dξ2例:甲、乙两名射手在同一条件下进行射击,分布列如下:击中环数ξ15678910概率P0.030.090.200.310.270.10射手甲射手乙击中环数ξ156789概率P0.010.050.200.410.33比较两名射手的射击水平Eξ1=8Eξ2=8乙的射击成绩稳定性较好例1、随机抛掷一枚质地均匀的骰子,求向上一面的点数X的均值、方差和标准差。例2:有甲乙两个单位都愿意聘用你,而你能获得如
4、下信息:甲单位不同职位月工资X1/元1200140016001800获得相应职位的概率P10.40.30.20.1乙单位不同职位月工资X2/元1000140018002200获得相应职位的概率P20.40.30.20.1根据工资待遇的差异情况,你愿意选择哪家单位?解:在两个单位工资的数学期望相等的情况下,如果认为自己能力很强,应选择工资方差大的单位,即乙单位;如果认为自己能力不强,就应选择工资方差小的单位,即甲单位。二、几个常用公式:例3.篮球运动员在比赛中每次罚球命中率为p=0.6(1)求一次投篮时命中率次数X的期望与方差;(2)求重复5次投篮时,命中次数Y的期
5、望与方差。相关练习:3、有一批数量很大的商品,其中次品占1%,现从中任意地连续取出200件商品,设其次品数为X,求EX和DX。117100.82,1.98一般地,若离散型随机变量X的概率分布列为……xnxi…x2x1Xpnpi…p2p1P期望方差三、课堂小结期望期望反映了X取值的平均水平。方差意义则EX=np(3)若X~B(n,p)则DX=np(1-p)计算公式(3)若X~B(n,p)(2)若X服从两点分布,则DX=p(1-p)方差反映了X取值的稳定与波动,集中与离散程度(2)若X服从两点分布,则EX=p1、离散型随机变量取值的方差、标准差及意义2、记住几个常见公
6、式例4、随机变量的分布列为其中,a,b,c成等差,若则的值为。-101Pabc1.根据统计,一年中一个家庭万元以上的财产被盗的概率为0.05,保险公司开办一年期万元以上家庭财产保险,参加者需交保险费100元,若在一年以内,万元以上财产被盗,保险公司赔偿a元(a>100),问a如何确定,可使保险公司期望获利?练习(2)、设X是一个离散型随机变量,其概率分布为求:(1)q的值;(2)EX,DX。X-101P1/21-2q2、(1)随机变量X~B(100,0.2),那么D(4X+3)=.0.030.97P1000-a1000E=1000-0.03a≥0.07a得a≤10
7、000故最大定为10000元。3、每人交保险费1000元,出险概率为3%,若保险公司的赔偿金为a(a>1000)元,为使保险公司收益的期望值不低于a的百分之七,则保险公司应将最大赔偿金定为多少元?4.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从此10张券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值(元)的概率分布列和期望E、方差。
此文档下载收益归作者所有