欢迎来到天天文库
浏览记录
ID:42912349
大小:118.00 KB
页数:3页
时间:2019-09-23
《第2课时 一次函数的图象和性质 (3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 一次函数的图象和性质1.会画一次函数图象,理解和掌握一次函数的图象和性质;(重点)2.理解y=kx+b与y=kx直线之间位置关系.一、情境导入1.什么叫正比例函数、一次函数?它们之间有什么关系?2.正比例函数的图象是什么形状?3.正比例函数y=kx(k是常数,k≠0)中,k的正负对函数图象有什么影响?既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗?它们的图象之间有什么关系?二、合作探究探究点一:一次函数的图象【类型一】一次函数图象的画法在同一平面直角坐标系中,作出下列函数
2、的图象.(1)y=2x-1;(2)y=x+3;(3)y=-2x;(4)y=5x.解析:分别求出满足各直线的两个特殊点的坐标,经过这两点作直线即可.解:(1)一次函数y=2x-1图象过(1,1),(0,-1);(2)一次函数y=x+3的图象过(0,3),(-3,0);(3)正比例函数y=-2x的图象过(1,-2),(0,0);(4)正比例函数y=5x的图象过(0,0),(1,5).方法总结:此题考查了一次函数的作图,解题关键是找出两个满足条件的点,连线即可.【类型二】判定一次函数图象的位置已知正比例函数y=kx(k≠0)的函数
3、值y随x的增大而增大,则一次函数y=2x+k的图象大致是( ) 解析:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∵一次函数y=2x+k的一次项系数大于0,常数项大于0,∴一次函数y=2x+k的图象经过第一、二、三象限.故选A.方法总结:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象必经过第一、三象限,y随x的增大而增大;当k<0,图象必经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:一次
4、函数的性质【类型一】判断函数的增减性和图象所经过的象限对于函数y=-5x+1,下列结论:①它的图象必经过点(-1,5);②它的图象经过第一、二、三象限;③当x>1时,y<0;④y的值随x值的增大而增大.其中正确的个数是( )A.0 B.1 C.2 D.3解析:∵当x=-1时,y=-5×(-1)+1=6≠5,∴点(-1,5)不在此函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y
5、<-4,则y<0,故③正确,④错误.综上所述,正确的只有③,故选B.方法总结:一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型二】一次函数的图象与系数的关系已知函数y=(2m-2)x+m+1.(1)m为何值时,图象过原点;(2)已知y随x增大而增大,求m的取值范围;(3)函数图象与y轴交点在x轴上方,求m的取值范围;(4)图象过第一、二象限,求m的取值范围.解析:(1)根据函数图象过原点可知,m+1=0,求
6、出m的值即可;(2)根据y随x增大而增大可知2m-2>0,求出m的取值范围即可;(3)由于函数图象与y轴交点在x轴上方,故m+1>0,进而可得出m的取值范围;(4)根据图象过第一、二象限列出关于m的不等式组,求出m的取值范围.解:(1)∵函数图象过原点,∴m+1=0,即m=-1;(2)∵y随x增大而增大,∴2m-2>0,解得m>1;(3)∵函数图象与y轴交点在x轴上方,∴m+1>0,即m>-1;(4)∵图象过第一、二象限,∴,解得-1<m<1.方法总结:本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0
7、)中,当k<0,b>0时,函数图象过第一、二象限是解答此题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第9题探究点三:一次函数图象的平移在平面直角坐标系中,将直线l1:y=-2x平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( )A.将l1向右平移4个单位长度B.将l1向左平移4个单位长度C.将l1向下平移4个单位长度D.将l1向上平移4个单位长度解析:由直线y=-2x与y轴的交点为(0,0),再求直线y=-2x+4与y轴的交点为(0,4),所以可得y=-2x向上平移4个单位长度得到y=-2x+4
8、;y=-2x与x轴的交点为(0,0),y=-2x+4与x轴的交点为(2,0),所以可得y=-2x向右平移2个单位长度的到y=-2x+4,故选D.方法总结:求直线平移后的解析式时,可求出平移前后的直线与x轴、y轴的交点的坐标.再根据点的坐标的变化得出直线的平移.变式训练:见《学练优》本课时练
此文档下载收益归作者所有