数列极限PPT课件

数列极限PPT课件

ID:42902867

大小:1.66 MB

页数:78页

时间:2019-09-25

数列极限PPT课件_第1页
数列极限PPT课件_第2页
数列极限PPT课件_第3页
数列极限PPT课件_第4页
数列极限PPT课件_第5页
资源描述:

《数列极限PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高等院校非数学类本科数学课程——一元微积分学高等数学(上)教案制作:吴洪武第三讲数列的极限作业习题1-2(教材21页)1(1);2(3);4;5;6;7;8.第二节数列的极限一、数列及其简单性质二、数列的极限三、数列极限的性质四、子列无限!再没有其它的问题——希尔伯特如此深刻地打动过人类的心灵.极限概念是从常量到变量,从有限到无限,即从初等数学过渡到高等数学的关键.极限的思想源远流长.1、割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽一、概念的引入1、割圆术:“

2、割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”——刘徽一、概念的引入“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入

3、“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”1、割圆术:——刘徽一、概念的引入正六边形的面积正十二边形的面积正形的面积以极限的记法即一、概念的引入截杖问题2“一尺之棰,日截其半,万世不竭”第n天截下的杖长总和为庄子(约公元前355~275年)概念的引入称为一个数列,记为{xn}.1.定义数列中的每一个数称为数列的一项xn=f(n)称为数列的通项或一般项一、数列及其简单性质数列也称为序列2.数列的表示法公式法图示法表格法运用数轴表示运用直角坐标系表示在平面上画出自变量坐标轴和因

4、变量坐标轴,注不可将这串点连成曲线.onxn····1234则数列的几何意义是平面上一串分离的点.介绍几个数列xn0242nx1x2……x•••••••••••••••……例1…xnx2x1x0x3…••••••••••01–1x所有的奇数项所有的偶数项x1M3x1xx4x2••••••••••0所有奇数项1xnx3x2x1x0………••••••••••…3.数列的性质单调性有界性(1)数列的单调性单调增加不减少的数列单调减少的情形怎么定义?有谁来说一说.单调减少不增加的严格单调增加(单调增加)严格单

5、调减少(单调减少)单调增加(不减少的)单调减少(不增加的)统称为单调数列数列(2)数列的有界性回想一下前面讲过的函数的有界性的情形我学过吗?数列的有界性的定义如何定义数列无界?有界的数列在数轴上和在直角坐标系中的图形会是什么样子?想想:

6、xn

7、

8、•••••••01xnx3x2x1x0………••••••••••…xn0242nx1x2……x•••••••••••••••……有些数列虽然无界,但它或者是下方有界的,或者是上方有界的.若xnM,MR,则称{xn}有上界.若xnm,mR,则称{xn}有下界.{xn}:有界既有上界又有下界.一个数列有界(有上界,有下界),则必有无穷多个界(上界,下界).现在来讨论如何定义数列的无有界性:首先看有界性定义的关键所在对所有的例3证分析数列极限的直观定义例如二、数列的极限可以看出,当n无限增大时,

9、无限接近101x“1”是它的极限.无限增大无限接近越来越大,即001例4一般地,如果数列{xn}当n时,列{xn}当n时以a为极限,记为xn可以无限地趋近某个常数a,则称数此时,也称数列是收敛的.数列极限的直观定义—定性描述极限描述的是变量的变化趋势.讨论数列当无限增大时的变化趋势.容易看出:当无限增大时,x1x3x2n-1x2nx4x2x0((()))*••••••••••••••••••••••••••“n无限增大”记为n.此时称数列当n时以零为极限,记为:这就是

10、该数列的变化趋势的图上看,从数列x1x3x2n-1x2nx4x2x0((()))*••••••••••••••••••••••••••量化表示:n时,xna.预先任意给定一个正数>0,不论它的值多么小,当n无限增大时,数列{xn}总会从某一项开始,以后的所有项都落在U(0,)中.(在U(0,)外面只有有限项)010)1(e<--nn其中,是描述点xn与点0无限接近的度量标准,它是预先任意给定的,与{xn}的极限存在与否无关.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。