欢迎来到天天文库
浏览记录
ID:42866506
大小:78.50 KB
页数:4页
时间:2019-09-23
《圆周角教案(第1课时)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、圆周角教案(第1课时)桐木中学李改明 三维目标: (1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:圆周角的概念和圆周角定理 教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想. 教学活动设计:(在教师指导下完成) (一)圆周角的概念 1、导问: 什么是圆心角? 答:顶点在圆心的角叫圆心角. 2、引题圆周
2、角: 如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义) 定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角 3、概念辨析: 1判断下列各图形中的是不是圆周角,并说明理由. 学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.2021-8-15 (二)圆周角的定理 1、提出圆周角的度数问题 问题:圆周角的度数与什么有关系? 经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧
3、所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部. (在教师引导下完成) (1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半. 提出必须用严格的数学方法去证明. 证明:(圆心在圆周角上) (2)其它情况,圆周角与相应圆心角的关系: 当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论. 证明:作出过
4、C的直径(略) 可以发现同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对等于它所对圆心角的一半. 说明:这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法) 2、巩固练习: (1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数? (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数? 说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个. (四
5、)总结 知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容. 思想方法:一种方法和一种思想: 在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业:金3练(六)教学反思:2021-8-15圆周角(第2课时) 三维教学目标: (1)掌握圆周角定理的推论,并会熟练运用这些知识进行有关的计算和证明; (2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力; (3)培养添加辅助线的能力和思维的广阔性. 教学重
6、点:圆周角定理的推论的应用. 教学难点:推论的灵活应用以及辅助线的添加教学活动设计: (一)创设学习情境 问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系? 问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢? (二)分析、研究、交流、归纳 让学生分析、研究,并充分交流. 注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立. 老师组织学生归纳: 1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周
7、角所对的弧也相等. 重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”. 问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识) 问题3:(1)一个特殊的圆弧——半圆,它所对的圆周角是什么样的角? (2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角? 学生通过以上两个问题的解决,在教师引导下得推论 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径. 指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件
8、,要熟练掌握. (三)应用、反思2021-8-15 交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D; 求BC,AD和BD的长. 说明:充分利用直径所对的圆周角为直角,解直角三角形. (四)小结(指导学生共同小结)知识:本节课主要学习了圆周角定理的几及其及推论.推论各具
此文档下载收益归作者所有