动点问题 (2)

动点问题 (2)

ID:42856175

大小:208.06 KB

页数:7页

时间:2019-09-21

动点问题 (2)_第1页
动点问题 (2)_第2页
动点问题 (2)_第3页
动点问题 (2)_第4页
动点问题 (2)_第5页
资源描述:

《动点问题 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中考动点型问题复习教学内容:动点问题教学目标:1.能够对点在运动变化过程中相伴随的数量关系、图形位置等进行分析探究,学会寻找变化过程中的不变量,并借助三角形有关的知识点来解答问题。2.通过多媒体展示动点问题中的动中求静,使学生充分感受到解决动点问题的实质是变动为静、寻找不变的量。3.使学生通过知识网络结构图,体会归纳总结的思想方法,在解题过程中体会分类思想、数形结合思想、方程思想、函数思想、转化思想。教学重点:动中求静,灵活运用有关数学知识解决问题。教学难点:动中求静,分类讨论,画出图形。教学过程:    动点问题是近年来中考的一个热点问题,所谓“动点问题”是指题设图形中存在一个

2、或多个动点,它们在线段、射线、直线或弧线上运动的一类开放型题目。数学中考动点型问题类型知 识 点名师点晴动点问题中的特殊图形[]等腰三角形与直角三角形利用等腰三角形或直角三角形的特殊性质求解动点问题相似问题利用相似三角形的对应边成比例、对应角相等求解动点问题动点问题中的计算问题动点问题的最值与定值问题理解最值或定值问题的求法动点问题的面积问题结合面积的计算方法来解决动点问题动点问题的函数图象问题一次函数或二次函数的 图象结合函数的图象解决动点问题 归纳 1:动点中的特殊图形基础知识归纳:等腰三角形的两腰相等,直角三角形的两直角边的平方和等于斜边的平方,平行四边形的对边平行且相等,

3、矩形的对角线相等,菱形的对角线互相垂直基本方法归纳:动点问题常与等腰三角形、直角三角形、平行四边形、矩形、菱形等特殊图形相结合,解决此类问题要灵活运用这些图形的特殊性质注意问题归纳:注意区分等腰三角形、直角三角形、平行四边形、矩形、菱形的性质.【例1】已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值归纳 2:动点问题中的计算问题基础知识归纳:动点问题的计算常常涉及到线段和的最小值、三角形

4、周长的最小值、面积的最大值、线段或面积的定值等问题.基本方法归纳:线段和的最小值通常利用轴对称的性质来解答,面积采用割补法或面积公式,通常与二次函数、相似等内容.注意问题归纳:在计算的过程中,要注意与相似、锐角三角函数、对称、二次函数等内容的结合.【例2】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是(      )A.12/5       B.4       C.24/5    D.5                                                  

5、            (例2图)练习:(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为      .(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程. 归纳 3

6、:动点问题的图象基础知识归纳:动点问题经常与一次函数、反比例函数和二次函数的图象相结合.基本方法归纳:一次函数图象是一条直线,反比例函数图象是双曲线,二次函数图象是抛物线.注意问题归纳:动点函数的图象问题可以借助于相似、特殊图形的性质求出函数的图象解析式,同时也可以观察图象的变化趋势. 【例3】如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是(  ) 归纳4:函数中的动点问题基础知识归纳:函数中的动点问题的背景是特

7、殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。基本方法归纳:一是利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题;二是利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。