欢迎来到天天文库
浏览记录
ID:42806902
大小:29.04 KB
页数:5页
时间:2019-09-21
《24.2.2直线与圆的位置关系及其判定》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.2.2直线与圆的位置关系及其判定1.知识结构 2.重点、难点分析 重点:直线和圆的位置关系的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“直线和圆的位置关系”的基础. 难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解. 3.教法建议 本节内容需要一个课时. (1)教师通过电脑演示,组织学生自主观
2、察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括; (2)在教学中,以“形”归纳“数”,以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学.教学目标: 1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质; 2、通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生 观察、分析和概括的能力; 3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点. 教学重点:直线和圆的位置关系的判定方法和性质. 教学难点:直线和圆的三种位置关系的研究及运
3、用. 教学设计: (一)基本概念 1、观察:(组织学生,使学生从感性认识到理性认识) 2、归纳:(引导学生完成) (1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点 3、概念:(指导学生完成) 由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系: (1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线. (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点. (3)相离:直线和圆没有公共点时,叫做直线和圆相离. 研究与理解: ①直线与
4、圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同. ②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么? (二)直线与圆的位置关系的数量特征 1、迁移:点与圆的位置关系 (1)点P在⊙O内 dr. 2、归纳概括: 如果⊙O的半径为r,圆心O到直线l的距离为d,那么 (1)直线l和⊙O相交 dr. (三)应用 例1、在Rt△ABC中
5、,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm. 学生自主完成,老师指导学生规范解题过程. 解:(图形略)过C点作CD⊥AB于D, 在Rt△ABC中,∠C=90°, AB= , ∵ ,∴AB·CD=AC·BC, ∴ (cm), (1)当r=2cm时 CD>r,∴圆C与AB相离; (2)当r=2.4cm时,CD=r,∴圆C与AB相切; (3)当r=3cm时,CD<r,∴圆C与AB相交. 练习P105,1、2.
6、 (四)小结: 1、知识:(指导学生归纳) 2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力. (五)作业:教材P115,1(1)、2、3.探究活动问题:如图,正三角形ABC的边长为 厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.略解:由正三角形的边长为厘米,可得它一边上的高为9厘米. ①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切
7、点个数为3. ②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即切点个数为6
此文档下载收益归作者所有