欢迎来到天天文库
浏览记录
ID:42625869
大小:367.50 KB
页数:4页
时间:2019-09-19
《二次函数综合训练题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数综合训练题(一)1.如图,在平面直角坐标系中,点的坐标为,点在轴的正半轴上,,为△的中线,过、两点的抛物线与轴相交于、两点(在的左侧).(1)求抛物线的解析式;(2)等边△的顶点、在线段上,求及的长;(3)点为△内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.(难)2.如图,直线与轴、轴分别交于A、B两点,把△OAB绕点O顺时针旋转90°得到△OCD.(1)求经过A、B、D三点的抛物线的解析式;(2)在所求的抛物线上是否存在一点P,使直线CP把△OCD分成面积相等的两部分?如果存在,求出点P的坐标;如
2、果不存在,请说明理由.3.如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1、x2是方程x2-2x-8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三APOBECxy角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理4.如图,抛物线与x轴交于A(-1,0)、B(3,0)两
3、点,与y轴交于点C(0,-3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标;(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).(1)求过A、B、C三点的抛物线解析式.(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点
4、E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S.①求S与t的函数关系式.②当t是多少时,△PBF的面积最大,最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.备用图yxxy备用图yx6.如图所示,平面直角坐标系中,抛物线y=ax+bx+c经过A(0,4)、B(-2,0)、C(6,0).过点A作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E.点M是四边形OADE的对角线
5、的交点,点F在y轴负半轴上,且F(0,-2).(1)求抛物线的解析式,并直接写出四边形OADE的形状;(2)当点P、Q从C、F两点同时出发,均以每秒1个长度单位的速度沿CB、FA方向运动,点P运动到O时P、Q两点同时停止运动.设运动的时间为t秒,在运动过程中,以P、Q、O、M四点为顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围;(3)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N的坐标;不存在,说明理由.二次函数综合训练题(二)1.已知抛物线顶点为C(1,1)且
6、过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.2.已知抛物线y=ax2+bx+c(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2.(1)求该抛物线的解析式.(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度
7、匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若存在,请说明理由.ABCOPQDyx3.如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0)、B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积;(3)在x轴下方的抛
8、物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.ACDOxy4.如图,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋转后与x轴的正半轴重合,点B的对应点为点A.(1
此文档下载收益归作者所有