二次函数规律探究(金华23题)

二次函数规律探究(金华23题)

ID:42614341

大小:195.50 KB

页数:5页

时间:2019-09-18

二次函数规律探究(金华23题)_第1页
二次函数规律探究(金华23题)_第2页
二次函数规律探究(金华23题)_第3页
二次函数规律探究(金华23题)_第4页
二次函数规律探究(金华23题)_第5页
资源描述:

《二次函数规律探究(金华23题)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、0823、(本题10分)如图1,已知双曲线与直线y=k'x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2),则点B的坐标为 _________ ;若点A的横坐标为m,则点B的坐标可表示为 _________ ;(2)如图2,过原点O作另一条直线L,交双曲线于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.1023.(本题10分)已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方

2、形PQMN,使点M落在反比例函数y=的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.yPQMNOx12-1-2-3-3-2-1123(第23题图)(1)如图所示,若反比例函数解析式为y=,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M1的坐标是▲(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦▲,若点P的坐标

3、为(m,0)时,则b﹦▲;(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.51123.(本题10分)在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在轴和轴的正半轴上,设抛物线(<0)过矩形顶点B、C.(1)当n=1时,如果=-1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;图1图2

4、图3xyMNxOCEABFAByCO…xOyACB②直接写出关于的关系式.1223.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为  时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.51、已知A1、A2、A3是抛物线y=x2上的三点,A1B1、A2B2、A3B3分别垂直于

5、x轴,垂足为B1、B2、B3,直线A2B2交线段A1A3于点C.(1)如图,若A1、A2、A3三点的横坐标依次为1,2,3,求线段CA2的长;(2)如图,若将抛物线y=x2改为抛物线y=x2-x+1,A1、A2、A3三点的横坐标为连续整数,其他条件不变,求线段CA2的长;(3)若将抛物线y=x2改为抛物线y=ax2+bx+c,A1、A2、A3三点的横坐标为连续整数,其他条件不变,请猜想线段CA2的长(用a、b、c表示,并直接写出答案).A22、(1)如图,A1,A2,A3是抛物线y=x2图象上的三点,若A1,A2,A3三点的横坐标从左至右依次为1,2,3.求△A1A2A3的面积.(2)

6、若将(1)问中的抛物线改为y=x2-x+2和y=ax2+bx+c(a>0),其他条件不变,请分别直接写出两种情况下△A1A2A3的面积.(3)现有一抛物线组:y1=x2-x;y2=x2-x;y3=x2-x;y4=x2-x;y5=x2-x;…依据变化规律,请你写出抛物线组第n个式子yn的函数解析式;现在x轴上有三点A(1,0),B(2,0),C(3,0).经过A,B,C向x轴作垂线,分别交抛物线组y1,y2,y3,…,yn于A1,B1,C1;A2,B2,C2;A3,B3,C3;…;An,Bn,Cn.记S△A1B1C1为S1,S△A2B2C2为S2,…,S△AnBnCn为Sn,试求S1+S

7、2+S3+…+S10的值.(4)在(3)问条件下,当n>10时有Sn-10+Sn-9+Sn-8+…Sn的值不小于,请探求此条件下正整数n是否存在最大值?若存在,请求出此值;若不存在,请说明理由.53、如图1,抛物线y=x2的顶点为P,A、B是抛物线上两点,AB∥x轴,四边形ABCD为矩形,CD边经过点P,AB=2AD.(1)求矩形ABCD的面积;(2)如图2,若将抛物线“y=x2”,改为抛物线“y=x2+bx+c”,其他条件不变,请猜想矩形AB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。