四种命题学案2010

四种命题学案2010

ID:41906867

大小:191.50 KB

页数:6页

时间:2019-09-04

四种命题学案2010_第1页
四种命题学案2010_第2页
四种命题学案2010_第3页
四种命题学案2010_第4页
四种命题学案2010_第5页
资源描述:

《四种命题学案2010》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、四种命题学案2010-8-20考纲要求:掌握简单逻辑连接词、能判断简单命题与复合命题的真假、掌握四种命题的关系。复习重点:其中判断简单命题与复合命题的真假与充要条件的判断是本内容的重点,而利用命题关系研究新的数学命题是难点,需要在此处多加注意教学过程:双基回顾:1、命题与逻辑连接词;2、p;q;p或q;p且q;﹁p;﹁q的真值表;3、四种命题关系;二、典型例题分析:例1、1.给出如下的命题:①对角线互相垂直且相等的四边形是正方形;②00=1;③如果x+y是整数,那么x,y都是整数;④<3或>3.其中真命题的个数

2、是2.下列说法:①2x+5>0;②;③如果x>2,那么就是有理数;④如果x0,那么就有意义.一定是命题的说法是例2、设有两个命题:(1)关于x的不等式x2+(a-1)x+a2>0的解集是R;(2)f(x)=是减函数.且(1)和(2)至少有一个为真命题,求实数a的取值范围.例3、已知,若﹁p是﹁q的必要不充分条件,求实数m的取值范围.练习:1、若命题p:,则是()且或2、用下列各组命题构成“p或q”,“p且q”,“非p”形式的复合命题.其中以“p或q”为真,“p且q”为假,“非p”为真的一组是()p:是有理数;q

3、:是无理数(a∈R)p:<+1;q:5≥3p:QR;q:N=Zp:tan=1;q:tan=-13、有下列四个命题:①命题“若,则,互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若≤1,则有实根”的逆否命题;④命题“若∩=,则”的逆否命题。其中是真命题的是4.给出命题:“已知是实数,若且,则”。读原命题,逆命题,否命题,逆否命题而言,其中的真命题有()A.0个B.1个C.2个D.4个课后小结:1.3充要条件学案2010-8-22复习目标;1、理解充分条件、必要条件、充要条件的意义2、能判定

4、所给的两个条件的充要关系。重点难点:能判定所给的两个条件的充要关系教学过程:基础回顾:知识点训练:1.下列各题中,p是q的什么条件(指充分不必要,必要不充分,充要,既不充分也不必要)?(1)p:x>1且y>1,q:x+y>2且xy>1;(2)p:x=1或x=-1,q:

5、x

6、=1;(3)p:两个三角形面积相等,q:这两个三角形全等;(4)p:x>y,q:;(5)p:a、b都是偶数,q:a+b是偶数;(6)p:

7、x

8、>

9、y

10、,q:x2>y2;2.如果,那A是的()A.充分条件B.必要条件C.充要条件D.以上都不对3

11、.设集合A={x

12、x2+x-6=0},B={x

13、mx+1=0},则B是A的真子集的一个充分不必要的条件是()A.B.m=C.D.4.设集合M={x

14、x>2},P={x

15、x<3},那么“x∈M,或x∈P”是“x∈M∩P”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.已知四个命题A、B、C、D,若A是B的充分不必要条件,C是B的必要不充分条件,D是C的充分必要条件,试问D是A的条件【典型例题】例1、方程3x2-10x+k=0有两个同号且不相等的实数根充要条件是.例2、已知方程,求

16、使方程有两个大于1的实数根的充要条件。例3、曲线与直线有两个不同交点的充要条件是什么?例4、.若,,均为实数,且求证:中至少有一个大于0。练习:1、下列说法正确的是()(A)“x<5”是”x<6”的必要条件.(B)“xy=0”是“x=0”的充分条件。(C)“x=0”是“x2+y2=0”的必要条件.(D)“x2<1”是“x<1”的充分条件。2、命题甲:x+y≠3,命题乙:x≠1且y≠2.则甲是乙的条件.本课小结:四种命题作业2010-8-201.已知命题p:若a∈A,则b∈B,那么命题┐p是()A、若a∈A则bB

17、B、若aA则bBC、若a∈A则b∈BD、若bB则a∈A.2.命题p:a2<0,q:2a+1是奇数(a∈N),则复合命题p且q;p或q;┐p;┐q中真命题的个数是()(A)1(B)2(C)3(D)4.3.若命题“p或q”是假命题,命题┐q是真命题.那么()(A)命题p和命题q都是假命题(B)命题p真命题和命题q是假命题(C)命题p是假命题,命题q是真命题(D)以上都不对.4、命题p:{2}∈{2,3};命题q:{2}{2,3},则()A“p或q”为真B“p且q”为真C“非p”为假D“非q”为真5、命题“恒成立”是

18、假命题,则实数的取值范围是.6、已知命题P:方程x2+mx+1=0有两个不相等的负根;命题Q:方程4x2+4(m-2)x+1=0无实根.若P或Q为真,P且Q为假,求m的取值范围.7、设命题P:函数y=cx在R上单调递减.命题Q:不等式的解集为R,若P、Q中只有一个正确,求实数c的取值范围.充要条件作业2010-8-221.若A是B成立的充分条件,则是成立的()A.充分条件B.必要条件C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。