资源描述:
《命题及其关系充分条件与必要条件[高考数学总复习][高中》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考数学总复习课堂作业教案课后拓展学案课时练习与详解免费下载命题及其关系、充分条件与必要条件基础自测1.(2009·成化高级中学高三期中考试)若命题“对xR,x2+4cx+1>0”是真命题,则实数c的取值范围是.答案2.(2008·湖北理,2)若非空集合A、B、C满足A∪B=C,且B不是A的子集,则下列说法中正确的是.(填序号)①“x∈C”是“x∈A”的充分条件但不是必要条件②“x∈C”是“x∈A”的必要条件但不是充分条件③“x∈C”是“x∈A”的充要条件④“x∈C”既不是“x∈A”的充分条件也不是“x∈A”的必
2、要条件答案②3.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的命题.答案否4.(2008·浙江理,3)已知a,b都是实数,那么“a2>b2”是“a>b”的条件.答案既不充分也不必要5.设集合A、B,有下列四个命题:①AB对任意x∈A都有xB;②ABA∩B=;③ABBA;④AB存在x∈A,使得xB.其中真命题的序号是.(把符合要求的命题序号都填上)答案④例1把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题、逆否命题.(1)正三角形的三内角相等;(2)全等三角形的面积相等;(3
3、)已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.解(1)原命题即是“若一个三角形是正三角形,则它的三个内角相等”.逆命题:若一个三角形的三个内角相等,则这个三角形是正三角形(或写成:三个内角相等的三角形是正三角形).否命题:若一个三角形不是正三角形,则它的三个内角不全相等.逆否命题:若一个三角形的三个内角不全相等,那么这个三角形不是正三角形(或写成:三个内角不全相等的三角形不是正三角形).(2)原命题即是“若两个三角形全等,则它们的面积相等.”逆命题:若两个三角形面积相等,则这两个三角形全等(或写
4、成:面积相等的三角形全等).否命题:若两个三角形不全等,则这两个三角形面积不相等(或写成:不全等的三角形面积不相等).逆否命题:若两个三角形面积不相等,则这两个三角形不全等.(3)原命题即是“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d”.其中“已知a,b,c,d是实数”是大前提,“a与b,c与d都相等”是条件p,“a+c=b+d”是结论q,所以逆命题:已知a,b,c,d是实数,若a+c=b+d,则a与b,c与d都相等.希望大家高考顺利高考数学总复习课堂作业教案课后拓展学案课时练习与详解免费下载否命
5、题:已知a,b,c,d是实数,若a与b,c与d不都相等,则a+c≠b+d.逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a与b,c与d不都相等.例2指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答).(1)在△ABC中,p:∠A=∠B,q:sinA=sinB;(2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6;(3)非空集合A、B中,p:x∈A∪B,q:x∈B;(4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q
6、:(x-1)(y-2)=0.解(1)在△ABC中,∠A=∠BsinA=sinB,反之,若sinA=sinB,因为A与B不可能互补(因为三角形三个内角和为180°),所以只有A=B.故p是q的充要条件.(2)易知:p:x+y=8,q:x=2且y=6,显然qp.但pq,即q是p的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件.(3)显然x∈A∪B不一定有x∈B,但x∈B一定有x∈A∪B,所以p是q的必要不充分条件.(4)条件p:x=1且y=2,条件q:x=1或y=2,所以pq但qp,故p是q的
7、充分不必要条件.例3(14分)已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.证明(必要性)∵a+b=1,∴a+b-1=0,2分∴a3+b3+ab-a2-b2=(a+b)(a2-ab+b2)-(a2-ab+b2)5分=(a+b-1)(a2-ab+b2)=0.7分(充分性)∵a3+b3+ab-a2-b2=0,即(a+b-1)(a2-ab+b2)=0,9分又ab≠0,∴a≠0且b≠0,∴a2-ab+b2=(a-b2>0,∴a+b-1=0,即a+b=1,12分综上可知,当ab≠0
8、时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.14分1.写出下列命题的否命题,并判断原命题及否命题的真假:(1)如果一个三角形的三条边都相等,那么这个三角形的三个角都相等;(2)矩形的对角线互相平分且相等;(3)相似三角形一定是全等三角形.解(1)否命题是:“如果一