初二数学第14章一次函数单元测试02

初二数学第14章一次函数单元测试02

ID:41816827

大小:60.31 KB

页数:5页

时间:2019-09-02

初二数学第14章一次函数单元测试02_第1页
初二数学第14章一次函数单元测试02_第2页
初二数学第14章一次函数单元测试02_第3页
初二数学第14章一次函数单元测试02_第4页
初二数学第14章一次函数单元测试02_第5页
资源描述:

《初二数学第14章一次函数单元测试02》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、初二数学第14章一次函数单元测试02班级姓名座号1•一般地,形如()的函数叫做正比例函数,其中k叫做O2.一般地,正比例函数的图象是一条,我们称它为。当k>0时,直线y=kx经过第彖限,从左向右,即随着x增大y:当时,直线y=kx经过第象限,从左向右,即随着x增大y。3.直角三角形两锐角的度数分别为禺y,其关系式为。4.若点A(m-1,2)在函数y=2x—6的图象上,则m的值为。5.某水果批发市场香蕉的价格如下表:购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克价格

2、6元5元4元若小强购买香蕉/千克匕大于40千克)付了y元,则y关于X的函数关系式为6.函数y=kx(k#O)的图彖过P(-3,7),贝,图象经过象限。7.若函数y=-2x'"2是正比例函数,则m的值是・8.汽年以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x之间的函数关系是y是兀的函数。9.在一次函数y=5x-3中,已知x=O,则歹=;若己知y=2,则兀=10.已知点P(a,4)在函数y=x+3的图象上,则11.如图1所示,是一次函数y=3兀-12的图像,观察图像思考:知方程3兀一1

3、2=0的解为o13.圆的面积y(厘米彳)与它的半径兀之间的函数关系是。y是兀的函数。14.已知一个止比例函数的图象经过点(-2,4),则这个正比例函数的表达式是._13.已知一次函数y=kx+5的图象经过点(-1,2),则k二.16•下列三个函数y二-2x,y二-*x,y二(电-&)x共同点是(1);(2);(3).17.某种储蓄的刀利率为0.15%,现存入1000元,则本息和y(元)与所存刀数x之间的函数关系式是•18.写出同时具备下列两个条件的一次函数表达式(写出一个即可).(1)y随着x的

4、增大而减小。(2)图象经过点(1,-3)19••某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表质量X(千克)1234售价y(元)3.60+0.207.20+0.2010.80+0.2014.40+0.2由上表得y与x之间的关系式是.20.下列函数屮,是正比例函数的是()3v(A)y=—(B)y=——(C)y=3x+9(D)y=2x2x4•21.对于函数y=-yf3x的两个确定的值X]、七來说,当%]<勺时,対应函数值儿与儿的关系()(A)Xy

5、2⑴)无法确定22.在下列各图象屮,表示函数y=-kx伙vO)的图象是()4yAy疋Ay/…一」/o八o八O\…/Ok(A)(B)(C)(D)23•下列函数(1)y=nx;(2)y二2xT;⑶y」;(4)y=2_1-3x;(5)y二x'-l中,是一次函数的有()X(A)4个(B)3个(C)2个(D)1个24.当兀>011寸,y与兀的函数解析式为y=2xf当x<0lit,y与兀的函数解析式为=-2x,则在同一直角朋标系中的图象人致为()⑷⑻(C)(D)25.(2005大连)点A(5,yj和B

6、(2,y2)都在直线丫=一x上,则力与y?的关系是()A、y2B>y】=y2C、yiy?26.某函数具有下列两条性质:(1)它的图彖经过原点(0,0)的一条直线;(2)y的值随兀的值增人而减小。请你写出-•个满足上述两个条件的函数解析式。27.汽车由天津驶往相距120千米的北京,S(千米)表示汽车离开天津的距离,t(小时)表示汽车行驶的时间.如图所示(1)汽车用儿小时可到达北京?速度是多少?(2)汽车行驶1小时,离开天津有多远?(3)当汽车距北京20千米时,汽车出发了多长时间?2

7、8.如图是某出租车单-程收费y(元)与行驶路程x(T米)之间的函数关系图象根据图象回答下列问题(1)当行驶8千米时,收费应为元⑵从图彖上你能获得哪些信息?(请写出2条)①②(3)求出收费y(元)与行使x(千米)(x23)之间的函数关系式25.某用煤单位有煤加吨,每天烧煤兀吨,现已知烧煤3天后余煤102吨,烧煤8天后余煤72最吨,(1)求加和n的值,并求该单位余煤量y吨与烧煤天数无之间的函数解析式;(2)当烧煤12天后,还余煤多少吨?(3)预计多少天后会把煤烧完?26.甲骑自行车、乙骑摩托车沿相同

8、路线由地到〃地,行驶过程中路程与时间的函数关系的图象如图.根据图象解决下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中(不包扌?;起点和终点)?在这一时间段内,请你根据下列悄形,分別列出关于行驶时间/的方程或不等式(不化简,也不求解):①甲在乙的前面;②甲与乙相遇;③甲在乙后面.y654321(公、里)乙」j甲////////O51015202530x(分)5.45

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。