初中圆的知识拓展提高

初中圆的知识拓展提高

ID:41814722

大小:294.41 KB

页数:13页

时间:2019-09-02

初中圆的知识拓展提高_第1页
初中圆的知识拓展提高_第2页
初中圆的知识拓展提高_第3页
初中圆的知识拓展提高_第4页
初中圆的知识拓展提高_第5页
资源描述:

《初中圆的知识拓展提高》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、初中整理人:孙亮鑫2017.12.17一、基础知识回顾定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。(2)平面上一条线段,绕它的一端旋转360。,留下的轨迹叫圆。圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。(3)圆任意两条对称轴的交点为圆心。(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。注:圆心一般用字母0表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一

2、般用字母r表示。圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r二二分之d。圆的半径或直径决定圆的人小,圆心决定圆的位置。圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母兀表示。计算吋,通常取它的近似值,14。直径所对的圆周角是直角。90°的圆周角所对的眩是直径。圆的面积公式:圆所占平面的大小

3、叫做圆的面积。兀r"2,用字母S表示。一条弧所对的圆周角是圆心角的二分z—。在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。在同圆或等圆屮,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。周长计算公式1.、已知直径:C=Jid2、已知半径:C=2Jir3、已知周长:D二c兀4、圆周长的一半:12周长(曲线)5、半圆的长:12周长+直径而积计算公式:1、己知半径:S

4、=“平方2、己知直径:S二兀(d2)平方3、己知周长:Sf(c2h)平方点、直线、1•点和圆的位置关系①点在圆内o点到圆心的距离小于半径②点在圆上O点到圆心的距离等于半径③点在圆外O点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。2.外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。3.直线和圆的位置关系相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。相切:直线和圆有一个公共点叫这条直线

5、和圆相切,这条直线叫做圆的切线,这个点叫做切点。相离:直线和圆没有公共点叫这条直线和圆相离。5.直线和圆位置关系的性质和判定如果00的半径为r,圆心0到直线/的距离为d,那么①直线/和O0相交O〃V厂;②直线,和相切°d=r;③直线,和相离°d>ro圆和圆定义:两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。两个圆有两个交点,叫做两个圆的相交。两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个

6、圆的内部,叫做两个圆的内切。两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。原理:圆心距和半径的数量关系:两圆外离V=>d>R+r两圆外切V=>d二R+r两圆相交<=>R-r=r)两圆内切<=>d=R-r(R>r)两圆内含V=>dr)3正多边形和1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。2、正多边形与圆的关系:⑴将一个圆n(n$3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。(2)这个圆是这个正多边形的外接圆。

7、3、正多边形的有关概念:(1)正多边形的中心一一正多边形的外接圆的圆心。(2)正多边形的半径一一正多边形的外接圆的半径。(3)正多边形的边心距一一正多边形中心到正多边形各边的距离。(4)正多边形的屮心角一一正多边形每一边所对的外接圆的圆心角。4、正多边形性质:(1)任何正多边形都有一个外接圆。(2)正多边形都是轴对称图形,当边数是偶数时,它又是屮心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。4弧长和扇形面积知识点1、弧长公式因为360。的圆心角所对的弧长就是圆周长C=2"R,所以1。的圆心角所对

8、的弧长是180于是可得半径为R的圆中,说明:(1)在计算20°的圆心克(1)n兀R1CC⑵(3)都不带单位“度X例如,圆的半径R=10,(2)在弧长公式屮,已知I,n,R屮的任意两个量,都可以求出第三个量。知识点2、扇形的面积如图所示,阴影部分的而积就是半径为R,圆心角为n°的扇形面积,显然扇形的而积是它所在圆的面积的一嚴2部分,因为圆心角是360°的扇形面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。